精英家教网 > 高中数学 > 题目详情
9.观察下列等式
(1)sin$\frac{2π}{3}$$+sin\frac{4π}{3}$=0
(2)sin$\frac{2π}{5}$$+sin\frac{4π}{5}$$+sin\frac{6π}{5}$$+sin\frac{8π}{5}$=0
(3)sin$\frac{2π}{7}$$+sin\frac{4π}{7}$$+sin\frac{6π}{7}$$+sin\frac{8π}{7}$$+sin\frac{10π}{7}$$+sin\frac{12π}{7}$=0

由以上规律推测,第n个等式为sin$\frac{2π}{2n+1}$+sin$\frac{4π}{2n+1}$+…+sin$\frac{2kπ}{2n+1}$+…+si n$\frac{4nπ}{2n+1}$=0.

分析 根据已知的三个等式发现等式左边各项是角度的正弦和,其中角度的分母为2n+1,分子是2π的n倍,项数是序号的2倍,由此得到所求.

解答 解:由已知三个等式,发现等式左边各项是角度的正弦和,其中角度的分母为2n+1,分子依次是2π,4π,6π,…共有2n项,项数是序号的2倍,
所以第n个等式为 sin$\frac{2π}{2n+1}$+sin$\frac{4π}{2n+1}$+…+sin    $\frac{2kπ}{2n+1}$+…+si n$\frac{4nπ}{2n+1}$=0;
故答案为:sin$\frac{2π}{2n+1}$+sin$\frac{4π}{2n+1}$+…+sin    $\frac{2kπ}{2n+1}$+…+si n$\frac{4nπ}{2n+1}$=0.

点评 本题考查了合情推理的归纳推理;关键是发现已知等式与序号之间的关系,总结归纳规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设有下面四个命题
p1:若复数z满足$\frac{1}{z}$∈R,则z∈R;
p2:关于x的不等式x2-ax+a>0(a∈R)在R上恒成立的充分不必要条件是a<0或a>4;
p3:($\frac{16}{81}$)${\;}^{\frac{1}{4}}$+2lg4+lg$\frac{5}{8}$=$\frac{5}{3}$;
p4:已知函数y=Asin(ωx+φ)在同一周期内,当x=$\frac{π}{3}$时有最大值2,当x=0时有最小值-2,那么函数的解析式为y=2sin(3x+$\frac{π}{2}$).
其中的真命题为(  )
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$f(x)=2{cos^2}(x+\frac{π}{6})+sin(2x+\frac{π}{3})$,则y=f(x)的对称轴为(  )
A.$x=\frac{π}{24}$B.$x=\frac{11π}{24}$C.$x=\frac{π}{25}$D.$x=\frac{11π}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={-1,0,1,2},B={x||x-1|≤1},则A∩B=(  )
A.{-1,0,1,2}B.{0,1,2}C.{-1,0,1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知一四面体的三组对边分别相等,且长度依次为5、$\sqrt{34}$、$\sqrt{41}$.
(1)求该四面体的体积;
(2)求该四面体外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知偶函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期为π
(Ⅰ)求f(x)在[$\frac{π}{6}$,$\frac{2π}{3}$]上的值域
(Ⅱ)将f(x)图象上的所有点向右平移$\frac{π}{2}$个单位,横坐标缩短到原来的$\frac{2}{3}$倍,纵坐标伸长到原来的2倍,得到函数g(x)的图象,求方程g(x)=$\frac{1}{2}$x$-\frac{π}{12}$的所有实数根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等,”以上推理的大前提是(  )
A.四边形的对角线相等B.矩形的对角线相等
C.矩形是四边形D.对角线相等的四边形是矩形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知方程$\frac{{x}^{2}}{s-2017}$$+\frac{{y}^{2}}{s-2019}$=1(s 为正整数)表示焦点在x上的双曲线,则s=(  )
A.2022B.2020C.2018D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位长度后得到一个奇函数的图象,则φ等于(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

同步练习册答案