精英家教网 > 高中数学 > 题目详情
a
a
b
为向量,若
a
+
b
a
的夹角为
π
3
a
+
b
b
的夹角为
π
4
,则
|
a
|
|
b
|
=
 
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:利用向量加法的平行四边形法则作图,右图可得相应的角,利用正弦定理可求答案.
解答: 解:如图所示(其中图中字母表示对应向量),
向量
a
+
b
a
的夹角为
π
3
a
+
b
b
的夹角为
π
4

∴∠CAB=
π
3
,∠ACB=
π
4

由正弦定理,得
AB
sin∠ACB
=
BC
sin∠CAB
,即
|
a
|
sin
π
4
=
|
b
|
sin
π
3

|
a
|
|
b
|
=
2
2
3
2
=
6
3

故答案为:
6
3
点评:本题考查平面向量数量积运算、正弦定理及加法的平行四边形法则,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数
1
2+i
在复平面内对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若角A、B、C的对边分别是a、b、c,则“a2+c2=b2+ac”,是“A、B、C依次成等差数列”的(  )
A、既不充分也不必要条件
B、充分不必要条件
C、必要不充分条件
D、充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α+
π
6
)=
4
5
(α为锐角),则sinα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B,C是⊙O上的三点,BE切⊙O于点B,D是CE与⊙O的交点.若∠BAC=60°,BC=2BE,求证:CD=2ED.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足an+1=
1
an2+2
(n∈N*),0<a1
1
2

(Ⅰ)求证:|an+2-an+1|<
1
4
|an+1-an|(n∈N*
(Ⅱ)求证:|an+1-an|<(
1
4
n-1(n∈N*
(Ⅲ)对任意n,m,k∈N*且n>m>k,求证:|am-an|<
4
3
•(
1
4
k

查看答案和解析>>

科目:高中数学 来源: 题型:

(x-
1
x
6的展开式中的常数项是
 
(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x-m)7=a0+a1x+a2x2+…+a7x7的展开式中x4的系数是-35,则a1+a2+a3+…a7=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设(1+2x)20=(a0+a1x+a2x2+…+a9x9+a10x10)•(1+x)10+b0+b1x+b2x2+…+b9x9,则b0-b1+b2-b3+…+b8-b9=
 

查看答案和解析>>

同步练习册答案