【题目】设函数
.
(1)若
在区间
上存在极值,求实数
的取值范围;
(2)①设
,求
的最小值;
②定义:对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“隔离直线”.设
,试探究
与
是否存在“隔离直线”?若存在,求出“隔离直线”的方程;若不存在,请说明理由.
【答案】(1)
;(2)①0;②存在,![]()
【解析】
(1)先求导,
.再分①
,
,
三种情况分类讨论.
(2)①由
,再求导
.,分
,
求解最小值;②由①知
与
的图象在
处有公共点
.设
与
存在“隔离直线”,方程为
,即
,再论证
在
上恒成立,
恒成立即可.
(1)
.
①当
时,
,
在区间
上递增,不存在极值;
②当
时,
,
在区间
上递减,不存在极值;
③当
时,得
在区间
上单调递减,在区间
上单调递增,
在
处取得极小值.
综上,实数
的取值范围是
.
(2)①
,
则
.
所以当
时,
;当
时,
.
因此
时,
取得最小值0;
②由①知
与
的图象在
处有公共点
.
设
与
存在“隔离直线”,方程为
,即
,
由
在
上恒成立,则
在
上恒成立.
所以
成立,
因此
.
下面证明
恒成立.
设
,则
.
所以当
时,
;当
时,
.
因此
时
取得最大值,则
恒成立.
故所求“隔离直线”方程为:
.
科目:高中数学 来源: 题型:
【题目】《孙子算经》是中国古代重要的数学著作,书中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”,该著作中提出了一种解决此问题的方法:“重置二位,左位减八,余加右位,至尽虚减一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数
是8的整数倍时,均可采用此方法求解,如图是解决这类问题的程序框图,若输入
,则输出的结果为( )
![]()
A.80B.47C.79D.48
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代有着辉煌的数学研究成果,其中《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》有着丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.现拟从这5部专著中选择2部作为学生课外兴趣拓展参考书目,则所选2部专著中至少有一部不是汉、魏、晋、南北朝时期专著的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的坐标方程为
,若直线
与曲线
相切.
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
、
于原点
构成
,且满足
,求面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:
![]()
(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;
(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求
的分布列和数学期望;
(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取
个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出
的最小值.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的倾斜角为
,且经过点
.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线
,从原点O作射线交
于点M,点N为射线OM上的点,满足
,记点N的轨迹为曲线C.
(Ⅰ)求出直线
的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线
与曲线C交于P,Q两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记
表示m,n中的最大值,如
.已知函数
,
.
(1)设
,求函数
在
上的零点个数;
(2)试探讨是否存在实数
,使得
对
恒成立?若存在,求a的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的离心率为
,直线l:x+2y=4与椭圆有且只有一个交点T.
(I)求椭圆C的方程和点T的坐标;
(Ⅱ)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断
是否为定值,若是请求出定值,若不是请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com