精英家教网 > 高中数学 > 题目详情
(理科)将A、B、C、D、E五种不同文件随机地放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,则文件A、B被放在相邻抽屉内且文件C、D被放在不相邻的抽屉内的放法种数为(  )
A、240B、480
C、840D、960
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:根据题意,用捆绑法,将A,B和C,D分别看成一个元素,相应的抽屉看成5个,把3个元素在5个位置排列,由排列数公式可得其排列数目,看成一个元素的A,B和C,D两部分还有一个排列,根据分步计数原理得到结果.
解答: 解:如果只考虑A、B必须相邻,其它不管,则A、B捆绑在一起,看成一个元素,则有A22A64=720种;
∵文件A、B必须放入相邻的抽屉内,文件C、D也必须放相邻的抽屉内
∴A,B和C,D分别看成一个元素,相应的抽屉看成5个,
则有3个元素在5个位置排列,共有A53种结果,
组合在一起的元素还有一个排列,共有A22A22A53=240种结果,
所以A、B必须相邻,C、D不相邻,则有720-240=480种.
故:选B
点评:本题考查排列、组合的运用,题目中要求两个元素相邻的问题,一般把这两个元素看成一个元素进行排列,注意这两个元素内部还有一个排列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1:x2+y2=4,圆C2:(x-3)2+(y+4)2=49,则两圆的位置关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x-1)+3(a>0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若bn=
1
an-an+1
,数列{bn}的前n项和为Tn,则T10=(  )
A、
9
11
B、
10
11
C、1
D、
12
11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若m⊥α,m⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若m?α,n?β,m∥n,则α∥β;
④若m、n是异面直线,m?α,m∥β,n?β,n∥α,则α∥β.
其中正确的是(  )
A、①和②B、①和③
C、③和④D、①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=a•g(x)+b•h(x)+2(a≠0,b≠0)在(0,+∞)上有最大值5,其中g(x)、h(x)都是定义在R上的奇函数.则f(x)在(-∞,0)上有(  )
A、最小值-5
B、最大值-5
C、最小值-1
D、最大值-3

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个表达式:
①|
a
+
b
|=|
a
|+|
b
|;
②|
a
-
b
|≥±(|
a
|-|
b
|);
a
2>|
a
|2
④|
a
b
|=|
a
|•|
b
|.
其中正确的个数为(  )
A、0B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域内为减函数的是(  )
A、y=-x3
B、y=x 
1
2
C、y=x2
D、y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

若点(a,4)在函数y=2x的图象上,则cos
3
的值为(  )
A、-
1
2
B、
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
exx≤0
lnx,x>0
,若对任意给定的a∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=ma2+2m2a,则正实数m的最小值是(  )
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

同步练习册答案