已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式.
(2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得
对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,说明理由.
(1)2n(2)存在
【解析】(1)由已知an=Sn-1+2,①
得an+1=Sn+2.②
②-①,得an+1-an=Sn-Sn-1(n≥2),
∴an+1=2an(n≥2).
又a1=2,∴a2=a1+2=4=2a1,
∴an+1=2an(n=1,2,3,…),
∴数列{an}是一个以2为首项,2为公比的等比数列,
∴an=2·2n-1=2n,n∈N*.
(2)bn===,∴Tn=bn+1+bn+2+…+b2n=++…+,Tn+1=bn+2+bn+3+…+b2(n+1)=++…+++.
∴Tn+1-Tn=+-==.
∵n是正整数,∴Tn+1-Tn>0,即Tn+1>Tn.
∴数列{Tn}是一个单调递增数列.又T1=b2=,∴Tn≥T1=,
要使Tn>恒成立,则>,即k<6.又k是正整数,故存在最大正整数k=5使Tn>恒成立.
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练2练习卷(解析版) 题型:解答题
某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习6-1直线与圆练习卷(解析版) 题型:解答题
已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习5-2空间向量与立体几何练习卷(解析版) 题型:选择题
如图所示,在空间直角坐标系中,有一棱长为a的正方体ABC-OA′B′C′D′,A′C的中点E与AB的中点F的距离为 ( ).
A.a B. a C.a D.a
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习5-1空间几何体与点等练习卷(解析版) 题型:选择题
如图,在正方形ABCD中,E、F分别是BC、CD的中点,AC∩EF=G.现在沿AE、EF、FA把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为P,则在四面体P-AEF中必有( ).
A.AP⊥△PEF所在平面
B.AG⊥△PEF所在平面
C.EP⊥△AEF所在平面
D.PG⊥△AEF所在平面
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习4-2数列求和与数列的综合应用练习卷(解析版) 题型:选择题
等比数列{an}的前n项和公式Sn,若2S4=S5+S6,则数列{an}的公比q的值为 ( ).
A.-2或1 B.-1或 2 C.-2 D.1
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习4-1等差数列与等比数列练习卷(解析版) 题型:填空题
设数列{an}是公差不为零的等差数列,Sn是数列{an}的前n项和,且S=9S2,S4=4S2,则数列{an}的通项公式为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习3-2解三角形练习卷(解析版) 题型:选择题
在△ABC中,若sin2A+sin2B>sin2C.则△ABC的形状是( ).
A.锐角三角形 B.直角三角形
C.钝角三角形 D.不能确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com