精英家教网 > 高中数学 > 题目详情
14.已知$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y-15≤0\\ x≥1\end{array}\right.$,则$z=\frac{y}{x}$的范围是$[\frac{8}{15},\frac{12}{5}]$.

分析 画出满足约束条件的可行域,求出各角点的坐标,分析目标函数$z=\frac{y}{x}$的几何意义,进而数形结合求出目标函数的取值范围.

解答 解:满足$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y-15≤0\\ x≥1\end{array}\right.$的可行域如下图所示:由$\left\{\begin{array}{l}{x=1}\\{3x+5y-15=0}\end{array}\right.$,解得A(1,$\frac{12}{5}$),由$\left\{\begin{array}{l}{x-4y+3=0}\\{3x+5y-15=0}\end{array}\right.$解得B($\frac{45}{17}$,$\frac{24}{17}$)
则$z=\frac{y}{x}$表示可行域内动点(x,y)与O(0,0)点连线的斜率
kOA=$\frac{12}{5}$;kOB=$\frac{\frac{24}{17}}{\frac{45}{17}}$=$\frac{8}{15}$;
故z的范围是$[\frac{8}{15},\frac{12}{5}]$.
故答案为:$[\frac{8}{15},\frac{12}{5}]$.

点评 本题考查的知识点是简单的线性规划,角点法是解答此类问题的常用方法,请熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知命题q:?x∈R,x2>0,则(  )
A.命题¬q:?x∈R,x2≤0为假命题B.命题¬q:?x∈R,x2≤0为真命题
C.命题¬q:?x∈R,x2≤0为假命题D.命题¬q:?x∈R,x2≤0为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点P为正四面体ABCD的棱BC上任意一点,则直线AP与直线DC所成角的范围是(  )
A.$[\frac{π}{6},\frac{π}{2}]$B.$[\frac{π}{4},\frac{π}{3}]$C.$[\frac{π}{3},\frac{π}{2}]$D.$[\frac{π}{6},\frac{π}{4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知Sn为数列{an}的前n项和,若a1=3且Sn+1=2Sn,则a4等于(  )
A.6B.12C.16D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-2|-4,g(x)=|x+1|-3.
(Ⅰ)若f(x)≤1,求实数x的取值范围;
(Ⅱ)若不等式f(x)-g(x)≥m-1有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足3an+1+an=4(n∈N*)且a1=9,其前n项和为Sn,则满足不等式|Sn-n-6|<$\frac{1}{100}$的最小整数n是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线经过点$({1,2\sqrt{2}})$,其一条渐近线方程为y=2x,则该双曲线的标准方程为$\frac{{y}^{2}}{4}$-x2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)(x∈R,且x≠1)的图象关于点(1,0)对称,当x>1时f(x)=loga(x-1),且f(3)=-1,则不等式f(x)>1的解集是(  )
A.$(-3,\frac{3}{2})$B.$(-∞,-3)∪(\frac{3}{2},+∞)$C.$(-∞,-1)∪(\frac{3}{2},+∞)$D.$(-∞,-1)∪(1,\frac{3}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,公差d≠0.且a3+S5=42,a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=$\frac{1}{{a}_{n-1}{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案