精英家教网 > 高中数学 > 题目详情
16.在三角形ABC中,∠B=$\frac{π}{3}$,AB=1,BC=2,点D在边AC上,且$\overrightarrow{AD}$=λ$\overrightarrow{AC}$,λ∈R.若$\overrightarrow{BD}$•$\overrightarrow{BC}$=2,则λ=$\frac{1}{3}$.

分析 利用向量的加减法法则及平面向量基本定理把$\overrightarrow{BD}$用$\overrightarrow{BA}$和$\overrightarrow{BC}$表示,然后结合$\overrightarrow{BD}$•$\overrightarrow{BC}$=2列式求得λ值.

解答 解:如图,

∵$\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BA}+λ\overrightarrow{AC}=\overrightarrow{BA}+$$λ(\overrightarrow{BC}-\overrightarrow{BA})$=$(1-λ)\overrightarrow{BA}+λ\overrightarrow{BC}$,
且∠B=$\frac{π}{3}$,AB=1,BC=2,
∴$\overrightarrow{BD}$•$\overrightarrow{BC}$=[(1-λ)$\overrightarrow{BA}$+λ$\overrightarrow{BC}$]•$\overrightarrow{BC}$=(1-λ)$\overrightarrow{BA}•\overrightarrow{BC}$+$λ{\overrightarrow{BC}}^{2}$
=(1-λ)$|\overrightarrow{BA}||\overrightarrow{BC}|cos60°$+$λ|\overrightarrow{BC}{|}^{2}$
=1×$2×\frac{1}{2}$(1-λ)+4λ=2,
解得λ=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查平面向量的数量积运算,考查向量垂直与数量积间的关系,训练了平面向量基本定理的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设函数$f(x)=\left\{\begin{array}{l}{e^x}-(a-1)x,\;\;\;\;(x≥0)\\ a-\frac{1}{x},\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x<0)\end{array}\right.$,若对任意的x∈R,f(x)>x恒成立,则实数a的取值范围是(  )
A.(-2,e)B.(-∞,e)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合{x∈Z|(x-2)(x2-3)=0}用列举法表示为(  )
A.{2,$\sqrt{3}$,-$\sqrt{3}$}B.{2,$\sqrt{3}$}C.{2,-$\sqrt{3}$}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{x}^{3}}{\sqrt{2-x}}$+lg(x+3)的定义域为(  )
A.(-3,2]B.[-3,2]C.(-3,2)D.(-∞,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.棱长为1的正方体的内切球的表面积为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.小李去上班可以搭同事的顺风车,同事经过小李家门口的时间是8:00且只等小李5分钟,小李在7:55到8:20到家门口,小李可以搭上顺风车的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ln$\frac{1-x}{3+x}$+x3+3x2+3x,则下列说法正确的是(  )
A.函数f(x)的图象关于x=-1对称B.函数f(x)的图象关于y=-1对称
C.函数f(x)的图象关于(-1,0)中心对称D.函数f(x)的图象关于(-1,-1)中心对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,所有棱长都为2的直四棱柱ABCD-A′B′C′D′中,B′D′中点为E′.
(1)求证:AE′∥平面BC′D;
(2)若∠BCD=60°,求二面角A-BC′-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.国庆期间,某旅行社团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元,若每团人数多于30,则给予优惠:每多一人,机票每张少10元,直到达到规定人数75人为止,每团乘飞机,旅行社需付给航空公司包机费15000元
(1)写出飞机票的价格关于人数的函数;
(2)每团人数是多少时,旅行社可获得最大利润.

查看答案和解析>>

同步练习册答案