精英家教网 > 高中数学 > 题目详情
11.棱长为1的正方体的内切球的表面积为π.

分析 求出棱长为1的正方体的内切球的半径即可.

解答 解:棱长为1的正方体的内切球的半径为$\frac{1}{2}$,表面积为S=4$π×(\frac{1}{2})^{2}$=π,
故答案为:π.

点评 本题考查了正方体内切球的表面积,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若函数$f(x)=\left\{\begin{array}{l}{e^x}-ax\;\;\;\;\;\;\;(x≥0)\\ x+\frac{1}{x}-a\;\;\;\;(x<0)\end{array}\right.$没有零点,则实数a的取值范围是(-2,e).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知复数z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$,若z2+az+b=1-i,
(1)z,|z|;
(2)求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.甲、乙、丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图所示若s,s,s分别表示他制测试成绩的标准差,则它们的大小关系为(  )
A.s<s<sB.s<s<sC.s<s<sD.s<s<s

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合M={1,9,a},集合P={1,a2},若P⊆M,则实数a的取值个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在三角形ABC中,∠B=$\frac{π}{3}$,AB=1,BC=2,点D在边AC上,且$\overrightarrow{AD}$=λ$\overrightarrow{AC}$,λ∈R.若$\overrightarrow{BD}$•$\overrightarrow{BC}$=2,则λ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,其中$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1),x∈R.
(1)求函数y=f(x)的单调递减区间;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,f(A)=-1,a=$\sqrt{7}$且向量$\overrightarrow{m}$=(3,sinB)与$\overrightarrow{n}$=(2,sinC)共线,求边长b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$a={log_{0.3}}2,b=sin\frac{π}{18},c={(0.5)^{-2}}$,则(  )
A.a<b<cB.b<c<aC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(2,3),B(6,1),O为坐标原点,P为x轴上一动点.
(Ⅰ)若$\overrightarrow{AP}$⊥$\overrightarrow{BP}$,求点P的坐标;
(Ⅱ)$当\overrightarrow{AP}•\overrightarrow{BP}取最小值时,求向量\overrightarrow{AP}与\overrightarrow{BP}的夹角的余弦值$.

查看答案和解析>>

同步练习册答案