精英家教网 > 高中数学 > 题目详情
5.已知不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相等.
(1)求实数a,b的值;
(2)求函数f(x)=$\sqrt{x-b}$+$\sqrt{a-x}$的最大值,以及取得最大值时x的值.

分析 (1)求出第一个不等式的解集确定出第二个不等式的解集,进而求出a与b的值;
(2)把a与b的值代入确定出f(x),记y=f2(x),利用二次函数性质求出y的最大值,进而确定出f(x)的最大值.

解答 解:(1)∵不等式|x-2|>1的解集为{x|x>1或x>3},
∴不等式x2-ax+b>0的解集为{x|x>1或x>3},
∴1,3为方程x2-ax+b=0的两根,则有$\left\{\begin{array}{l}{1+3=a}\\{1×3=b}\end{array}\right.$,
解得:a=4,b=3;
(2)由(1)知f(x)=$\sqrt{x-3}$+$\sqrt{4-x}$,x∈[3,4],
记y=f2(x),则y=1+2$\sqrt{(x-3)(4-x)}$=1+2$\sqrt{-{x}^{2}+7x-12}$,
∴当x=$\frac{7}{2}$时,y=f2(x)有最大值,即f(x)max=f($\frac{7}{2}$)=$\sqrt{\frac{7}{2}-3}$+$\sqrt{4-\frac{7}{2}}$=$\sqrt{2}$.

点评 此题考查了绝对值不等式的解法,以及判断两个函数是否为同一函数,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设命题P:曲线y=e-x在点(-1,e)处的切线方程是:y=-ex;命题q:f′(x)是函数f(x)的导函数.若f′(x0)=0的充要条件是x0是函数f(x)的极值点.则(  )
A.“p∨q”为真B.“p∧q”为真C.p假q真D.p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.方程f(x)=x的根称为函数f(x)的不动点,若函数f(x)=$\frac{x}{a(x+2)}$有唯一不动点,且x1=1000,xn+1=$\frac{1}{{f(\frac{1}{x_n})}}$,n=1,2,3,…,则x2015=2007.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),短轴端点到其右焦点F(2,0)的距离为$\sqrt{5}$,O为坐标原点.
(1)求椭圆W的方程;
(2)设A,B,C是椭圆W上的三个点,判断四边形OABC能否为矩形?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某农场在冬季进行一次菌种培养需要5天时间,5天内每天发生低温冻害的概率均为$\frac{1}{3}$.如果5天内没有发生冻害,可获利润10万元,有一天发生冻害可获利润5万元,有两天发生冻害可获利润0万元,而发生3天或3天以上冻害则损失2万元.
(1)求一次菌种培养不出现亏损的概率;
(2)求一次菌种培养获得利润ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知{an}是等差数列,且a1+a3+a8+a10=46,则a6+a5=(  )
A.12B.16C.20D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)证明柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,并指出此不等式里等号成立的条件:
(2)用柯西不等式求函数y=2$\sqrt{x-3}$+4$\sqrt{5-x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{\overrightarrow{a}}$=(λ+2,λ2-$\sqrt{3}$cos2a),向量$\overrightarrow{b}$=(m,$\frac{m}{2}$+sinacosa,其中λ,m,α为实数.若向量$\overrightarrow{a}$=2$\overrightarrow{b}$,则$\frac{λ}{m}$的取值范围为(  )
A.[-6,1]B.[-3,3]C.[1,7]D.[2,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点A=(0,1,1),B=(1,2,1),C=(1,1,2),则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案