精英家教网 > 高中数学 > 题目详情
17.(1)证明柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,并指出此不等式里等号成立的条件:
(2)用柯西不等式求函数y=2$\sqrt{x-3}$+4$\sqrt{5-x}$的最大值.

分析 (1)利用作差法,即可证明不等式;
(2)利用柯西不等式,可得$y=2×\sqrt{x-3}+4×\sqrt{5-x}≤\sqrt{({2^2}+{4^2})[{{(\sqrt{x-3})}^2}+{{(\sqrt{5-x})}^2}]}$,即可得出结论.

解答 (1)证明:(a2+b2)(c2+d2)-(ac+bd)2=a2d2+b2c2-2adbc…(2分)
=(ad-bc)2≥0,…(4分)
当且仅当ad-bc=0时,等号成立.…(5分)
(2)解:函数的定义域为[3,5],且y>0,…(6分)
则$y=2×\sqrt{x-3}+4×\sqrt{5-x}≤\sqrt{({2^2}+{4^2})[{{(\sqrt{x-3})}^2}+{{(\sqrt{5-x})}^2}]}$…(8分)
=$\sqrt{20×2}=2\sqrt{10}$,…(9分)
当且仅当$2\sqrt{5-x}=4\sqrt{x-3}$时,等号成立,
即$x=\frac{17}{5}$时函数取最大值$2\sqrt{10}$.…(10分)

点评 本题考查不等式的证明,考查柯西不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,A=78°,a=5$\sqrt{2}$,b=7,则此三角形(  )
A.有一个解B.有两个解C.无解D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2e-x,当曲线y=f(x)的切线斜率为负数时,求切线在x轴上截距的取值范围(-∞,0)∪[2$\sqrt{2}$+3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相等.
(1)求实数a,b的值;
(2)求函数f(x)=$\sqrt{x-b}$+$\sqrt{a-x}$的最大值,以及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知P={y|y=cosθ,θ∈R},Q={x|x2+(1-$\sqrt{2}$)x-$\sqrt{2}$=0},则P∩Q=(  )
A.B.{0}C.{-1}D.$\{-1,\sqrt{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:
①b2>4ac; 
②2a-b=1; 
③a-b+c=0; 
④5a<b.
其中正确的是(  )
A.②④B.①④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x+2)=f(x),若f(x)满足:
①x∈[0,2)时,f(x)=a-|x-b|,
②f(x)是定义在R上的周期函数,
③存在m使得f(x+m)=-f(m-x)
则a+b的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow a$=(cos$\frac{3}{2}$x,-sin$\frac{3}{2}$x),$\overrightarrow b$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),x∈[0,$\frac{π}{2}$].若函数f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$λ|${\overrightarrow a$+$\overrightarrow b}$|的最小值为-$\frac{3}{2}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)求值:(6.25)${\;}^{\frac{1}{2}}$-(-π)0-(-$\frac{8}{27}$)${\;}^{\frac{2}{3}}$+(1.5)-2
(2)解不等式:73x<($\frac{1}{7}$)12-6x

查看答案和解析>>

同步练习册答案