分析 (1)令F(0)=0列方程计算m,得出F(x)的解析式,根据真数大于零列不等式组求出定义域;
(2)计算F(-x),利用对数的运算性质得出F(-x)和F(x)的关系即可得出结论;
(3)利用对数的单调性列出不等式解出x.
解答 解:(1)F(x)=loga(x+m)-loga(1-x)=loga$\frac{x+m}{1-x}$,
∵F(0)=logam=0,
∴m=1,
∴F(x)=loga$\frac{x+1}{1-x}$,
由F(x)有定义得$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\end{array}\right.$,解得-1<x<1,
∴F(x)的定义域为{x|-1<x<1}.
(2)函数的定义域为{x|-1<x<1},关于原点对称.
F(-x)=loga$\frac{1-x}{1+x}$=-loga$\frac{1+x}{1-x}$=-F(x),
∴F(-x)=-F(x),
∴F(x)是奇函数.
(3)∵F(x)=loga(x+1)-loga(1-x)>0,
∴loga(x+1)>loga(1-x),
∵a>1,∴$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1>1-x}\end{array}\right.$,解得0<x<1.
∴当 a>1时,原不等式的解集为{x|0<x<1}.
点评 本题考查了对数函数的性质,函数奇偶性的判断,单调性的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “x2+x-2>0”是“x>1”的充分不必要条件 | |
| B. | “若am2<bm2,则a<b”的逆否命题为真命题 | |
| C. | 命题“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0” | |
| D. | 命题“若x=$\frac{π}{4}$,则tanx=1”的逆命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com