精英家教网 > 高中数学 > 题目详情
16.过点M(-2,0)的直线l与双曲线x2-2y2=2交于P1,P2线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于(  )
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

分析 由题意设直线l的方程为:y=k1(x+2),代入双曲线方程,由韦达定理求得x1+x2=$\frac{8{k}_{1}^{2}}{1-2{k}_{1}^{2}}$,则y1+y2=k1(x1+x2+4)=$\frac{4{k}_{1}}{1-2{k}_{1}^{2}}$,根据中点坐标公式求得P点坐标,根据直线的斜率公式即可求得直线OP的斜率为k2,即可求得k1k2的值.

解答 解:设直线l的方程为:y=k1(x+2),P1(x1,y1),P2(x2,y2),
∴$\left\{\begin{array}{l}{y={k}_{1}(x+2)}\\{{x}^{2}-2{y}^{2}=2}\end{array}\right.$,整理得:(1-2k12)x2-8k12x-8k12-2=0,
由韦达定理可知:x1+x2=$\frac{8{k}_{1}^{2}}{1-2{k}_{1}^{2}}$,
而y1+y2=k1(x1+x2+4)=$\frac{4{k}_{1}}{1-2{k}_{1}^{2}}$,
由中点坐标公式可知:P($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$),即P($\frac{4{k}_{1}^{2}}{1-2{k}_{1}^{2}}$,$\frac{2{k}_{1}}{1-2{k}_{1}^{2}}$)
∴OP的斜率k2=$\frac{\frac{2{k}_{1}}{1-2{k}_{1}^{2}}}{\frac{4{k}_{1}^{2}}{1-2{k}_{1}^{2}}}$=$\frac{1}{2{k}_{1}}$,
∴k1k2=k1×$\frac{1}{2{k}_{1}}$=$\frac{1}{2}$,
∴k1k2=$\frac{1}{2}$,
故选D.

点评 本题考查直线与双曲线的位置关系,考查线段的中点坐标公式,考查韦达定理,直线的斜率公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是(  )
A.若m、n都平行于平面α,则m、n一定不是相交直线
B.若m、n都垂直于平面α,则m、n一定是平行直线
C.已知α、β互相平行,m、n互相平行,若m∥α,则n∥β
D.若m、n在平面α内的射影互相平行,则m、n互相平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列图形中,表示函数图象的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(x+m),g(x)=loga(1-x)其中a>1.若函数F(x)=f(x)-g(x)的零点是0
(1)求m 的值及函数F(x)定义域;
(2)判断F(x)的奇偶性,并说明理由;
(3)求使F(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知二次函数的图象开口向上,且满足f(2013+x)=f(2013-x),x∈R,则f(2011)与f(2014)的大小关系为f(2011)>f(2014).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出下列命题:
①函数f(x)=loga(2x-1)-1的图象过定点(1,0);
②已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2-|x|;
③若${log_a}\frac{1}{2}<1$,则a的取值范围是$(0,\frac{1}{2})∪(2,+∞)$;
其中所有正确命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知Sn=$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,若Sm=9,则m=(  )
A.11B.99C.120D.121

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x≥1}\\{-x+1,x<1}\end{array}\right.$,则满足方程f[f(m)]=log${\;}_{\frac{1}{2}}$f(m)的m的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ax+b(a>0且a≠1)的定义域和值域都是[-1,0],则a+b=(  )
A.-$\frac{1}{2}$B.-$\frac{3}{2}$C.-$\frac{5}{2}$D.-$\frac{1}{2}$或-$\frac{5}{2}$

查看答案和解析>>

同步练习册答案