分析 通过m的取值,分类讨论方程是否有解,推出结果即可、
解答 解:当m≥1时,f(m)=$lo{g}_{\frac{1}{2}}m$<0,
f[f(m)]=log${\;}_{\frac{1}{2}}$f(m)化为:-$lo{g}_{\frac{1}{2}}m$+1=$lo{g}_{\frac{1}{2}}(lo{g}_{\frac{1}{2}}m)$,无意义.
当m<1时,f(m)=-m+1>0,
①-m+1<1,可得m∈(0,1),
方程f[f(m)]=log${\;}_{\frac{1}{2}}$f(m)有意义,
此时方程化为:-(-m+1)+1=$lo{g}_{\frac{1}{2}}(-m+1)$,
可得m=$lo{g}_{\frac{1}{2}}(-m+1)$,如图:方程无解.![]()
②当m≤0时,-m+1>1,
方程化为:$lo{g}_{\frac{1}{2}}(-m+1)$═$lo{g}_{\frac{1}{2}}(-m+1)$,恒成立.
综上m的取值范围是:(-∞,0].
故答案为:(-∞,0].
点评 本题考查函数与方程的综合应用,考查数形结合分类讨论思想的应用,考查转化首项以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | “x2+x-2>0”是“x>1”的充分不必要条件 | |
| B. | “若am2<bm2,则a<b”的逆否命题为真命题 | |
| C. | 命题“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0” | |
| D. | 命题“若x=$\frac{π}{4}$,则tanx=1”的逆命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | (-1,1] | C. | [1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?n∈N,n2≤2n | B. | ?n∈N,n2>2n | C. | ?n∈N,n2>2n | D. | ?n∈N,n2=2n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com