精英家教网 > 高中数学 > 题目详情
8.已知Sn=$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,若Sm=9,则m=(  )
A.11B.99C.120D.121

分析 根据裂项求和即可得到答案.

解答 解:$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$,
∴Sn=$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=($\sqrt{2}$-1)+($\sqrt{3}$$-\sqrt{2}$)+…+($\sqrt{n+1}$-$\sqrt{n}$)=$\sqrt{n+1}$-1,
∵Sm=9,
∴$\sqrt{m+1}$-1=9,
解得m=99,
故选:B.

点评 本题给出一个特殊的数列,在已知前m项的和的情况下,求正整数m的值,着重考查了数列求和中裂项累加的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.△ABC是边长为2的等边三角形,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,则下列结论错误的是(  )
A.|$\overrightarrow{b}$|=1B.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$C.$\overrightarrow{a}$•$\overrightarrow{b}$=1D.|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集为实数集R,集合A={x|y=$\sqrt{x-1}$+$\sqrt{3-x}$},B={x|2x>4}
( I)分别求A∪B,A∩B,(∁UB)∪A
( II)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点M(-2,0)的直线l与双曲线x2-2y2=2交于P1,P2线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于(  )
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=3x-3ax+b且$f(1)=\frac{8}{3}$,$f(2)=\frac{80}{9}$.
(1)求a,b的值;        
 (2)判断f(x)的奇偶性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别是a,b,c,若$\frac{c}{sinB}$+$\frac{b}{sinC}$=2a,b=$\sqrt{2}$,则△ABC面积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)x-2a,x<1}\\{lnx,x≥1}\end{array}\right.$的值域为R,则实数a的范围是(  )
A.[-1,1]B.(-1,1]C.[1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题P:?n∈N,n2≤2n,则¬P为(  )
A.?n∈N,n2≤2nB.?n∈N,n2>2nC.?n∈N,n2>2nD.?n∈N,n2=2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=2sin(ωx-$\frac{π}{3}}$)(0<ω<2π)的图象关于直线x=-$\frac{1}{6}$对称,则f(x)的递增区间是(  )
A.$[{-\frac{1}{6}+2kπ,\frac{5}{6}+2kπ}],k∈z$B.$[{-\frac{1}{6}+2k,\frac{5}{6}+2k}],k∈z$
C.$[{\frac{5}{6}+2kπ,\frac{11}{6}+2kπ}],k∈z$D.$[{\frac{5}{6}+2k,\frac{11}{6}+2k}],k∈z$

查看答案和解析>>

同步练习册答案