精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=2sin(ωx-$\frac{π}{3}}$)(0<ω<2π)的图象关于直线x=-$\frac{1}{6}$对称,则f(x)的递增区间是(  )
A.$[{-\frac{1}{6}+2kπ,\frac{5}{6}+2kπ}],k∈z$B.$[{-\frac{1}{6}+2k,\frac{5}{6}+2k}],k∈z$
C.$[{\frac{5}{6}+2kπ,\frac{11}{6}+2kπ}],k∈z$D.$[{\frac{5}{6}+2k,\frac{11}{6}+2k}],k∈z$

分析 由已知中函数图象关于直线x=-$\frac{1}{6}$对称,求出ω值,进而根据正弦函数的单调性,可得f(x)的递增区间.

解答 解:函数f(x)=2sin(ωx-$\frac{π}{3}}$)(0<ω<2π)的图象关于直线x=-$\frac{1}{6}$对称,
则-$\frac{1}{6}$ω-$\frac{π}{3}}$=$\frac{π}{2}$+kπ,k∈Z,
∴ω=-5π+6kπ,k∈Z,
∵0<ω<2π,
故ω=π,
故函数f(x)=2sin(πx-$\frac{π}{3}}$),
令πx-$\frac{π}{3}}$∈$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ],k∈z$,
则x∈$[-\frac{1}{6}+2k,\frac{5}{6}+2k],k∈z$,
即f(x)的递增区间是$[-\frac{1}{6}+2k,\frac{5}{6}+2k],k∈z$,
故选:B.

点评 本题考查的知识点是复合函数的单调性,三角函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知Sn=$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,若Sm=9,则m=(  )
A.11B.99C.120D.121

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从0,1,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有48个.(结果用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ax+b(a>0且a≠1)的定义域和值域都是[-1,0],则a+b=(  )
A.-$\frac{1}{2}$B.-$\frac{3}{2}$C.-$\frac{5}{2}$D.-$\frac{1}{2}$或-$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x≤-1}\\{{x}^{2,}-1<x<2}\\{2x,x≥2}\end{array}\right.$.
(1)求f(f(-2));
(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(-4,0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
(1)求∠B 的大小;
(2)求cosA+$\sqrt{2}$cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}的前n项和为Sn,且满足$\frac{S_7}{7}$-$\frac{S_4}{4}$=3,则数列{an}的公差为(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中是偶函数的是(  )
A.y=x2B.y=2x-1C.y=(x-1)2D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若A是定直线l外一定点,则过点A且与直线l相切的圆的圆心轨迹为(  )
A.直线B.椭圆C.线段D.抛物线

查看答案和解析>>

同步练习册答案