精英家教网 > 高中数学 > 题目详情
7.从0,1,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有48个.(结果用数字作答)

分析 因为0不能再首位,所以分选0和不选0两类,再排列.

解答 解:若选0,则有${A}_{2}^{1}{A}_{3}^{2}$=12个,若不选0,则有${C}_{2}^{1}{C}_{3}^{2}{A}_{3}^{3}$=36个,
根据分类计算原理得,成一个没有重复数字的三位数,这样的三位数共有12+36=48个.
故答案为:48.

点评 本题考查排列、组合及简单计数问题,解题的关键是正确理解偶的含义,以及计数原理,且能根据问题的要求进行分类讨论,本题考查了推理判断的能力及运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知全集为实数集R,集合A={x|y=$\sqrt{x-1}$+$\sqrt{3-x}$},B={x|2x>4}
( I)分别求A∪B,A∩B,(∁UB)∪A
( II)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)x-2a,x<1}\\{lnx,x≥1}\end{array}\right.$的值域为R,则实数a的范围是(  )
A.[-1,1]B.(-1,1]C.[1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题P:?n∈N,n2≤2n,则¬P为(  )
A.?n∈N,n2≤2nB.?n∈N,n2>2nC.?n∈N,n2>2nD.?n∈N,n2=2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α是△ABC的一个内角,且$sinα+cosα=\frac{{\sqrt{2}}}{2}$,则sin2α的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=a3x+1,g(x)=($\frac{1}{a}$)5x-2,其中a>0,且a≠1.
(1)若0<a<1,求满足f(x)<1的x的取值范围;
(2)求关于x的不等式f(x)≥g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:
月平均气温x(°C)171382
月销售量y(件)24334055
(1)算出线性回归方程$\widehat{y}$=bx+a; (a,b精确到十分位)
(2)气象部门预测下个月的平均气温约为6℃,据此估计,求该商场下个月毛衣的销售量.
参考公式:线性回归方程为,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=2sin(ωx-$\frac{π}{3}}$)(0<ω<2π)的图象关于直线x=-$\frac{1}{6}$对称,则f(x)的递增区间是(  )
A.$[{-\frac{1}{6}+2kπ,\frac{5}{6}+2kπ}],k∈z$B.$[{-\frac{1}{6}+2k,\frac{5}{6}+2k}],k∈z$
C.$[{\frac{5}{6}+2kπ,\frac{11}{6}+2kπ}],k∈z$D.$[{\frac{5}{6}+2k,\frac{11}{6}+2k}],k∈z$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若2sin$\frac{B}{2}$•cos$\frac{B}{2}$•sinC=cos2$\frac{A}{2}$,则△ABC是(  )
A.等边三角形B.等腰三角形C.非等腰三角形D.直角三角形

查看答案和解析>>

同步练习册答案