精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=3x-3ax+b且$f(1)=\frac{8}{3}$,$f(2)=\frac{80}{9}$.
(1)求a,b的值;        
 (2)判断f(x)的奇偶性,并用定义证明.

分析 (1)由条件利用待定系数法求得a、b的值,可得函数的解析式.
(2)根据的定义域为R,关于原点对称,再根据f(-x)=-f(x),从而得出结论.

解答 解:(1)∵函数f(x)=3x-3ax+b,$f(1)=\frac{8}{3}$,$f(2)=\frac{80}{9}$,
∴$\left\{\begin{array}{l}{{3}^{1}{-3}^{a+b}=\frac{8}{3}}\\{{3}^{2}{-3}^{2a+b}=\frac{80}{9}}\end{array}\right.$,即$\left\{\begin{array}{l}{{3}^{a+b}=\frac{1}{3}}\\{{3}^{2a+b}=\frac{1}{9}}\end{array}\right.$,即$\left\{\begin{array}{l}{a+b=-1}\\{2a+b=-2}\end{array}\right.$,∴a=-1,b=0.
  (2)由(1)可得f(x)=3x-3-x,它的定义域为R,关于原点对称,
再根据f(-x)=3-x-3x=-f(3x-3-x)=-f(x),故该函数为奇函数.

点评 本题主要考查用待定系数法求函数的解析式,函数的奇偶性的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列函数中,是奇函数,又在定义域内为减函数的是(  )
A.$y={({\frac{1}{2}})^x}$B.$y=\frac{2}{x}$C.y=-2x3D.$y={log_2}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列说法:
①集合A={x∈Z|x=2k-1,k∈Z}与集合B={x∈z|x=2k+3,k∈Z}是相等集合;
②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③函数y=$\frac{1}{{x}^{2}}$的单调减区间是(-∞,0)∪(0,+∞);
④不存在实数m,使f(x)=x2+mx+1为奇函数;
⑤若f(x+y)=f(x)f(y),且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2016)}{f(2015)}$=2016.
其中正确说法的序号是(  )
A.①②③B.②③④C.①③⑤D.①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知二次函数的图象开口向上,且满足f(2013+x)=f(2013-x),x∈R,则f(2011)与f(2014)的大小关系为f(2011)>f(2014).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为$\frac{3}{2}$,其中A(a,0),B(0,-b).
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在y轴正半轴上的端点,过B作直线与双曲线交于M,N两点,求B1M⊥B1N时,直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知Sn=$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,若Sm=9,则m=(  )
A.11B.99C.120D.121

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>3}\\{3-x,x≤3}\end{array}\right.$,则f(f(-1))的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是等比数列,公比q=$\sqrt{2}$,Sn为{an}的前n项和.记Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,设Tm为数列{Tn}的最大项,则m=(  )
A.2B.1C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x≤-1}\\{{x}^{2,}-1<x<2}\\{2x,x≥2}\end{array}\right.$.
(1)求f(f(-2));
(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(-4,0)上的值域.

查看答案和解析>>

同步练习册答案