精英家教网 > 高中数学 > 题目详情
12.设{an}是等比数列,公比q=$\sqrt{2}$,Sn为{an}的前n项和.记Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,设Tm为数列{Tn}的最大项,则m=(  )
A.2B.1C.4D.3

分析 首先用公比q和a1分别表示出Sn和S2n,代入Tn易得到Tn的表达式,再根据基本不等式得出m.

解答 解:设等比数列的首项为a1,则an=a1($\sqrt{2}$)n-1,Sn=$\frac{{a}_{1}[1-(\sqrt{2})^{n}]}{1-\sqrt{2}}$,
∴Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$=$\frac{17•\frac{{a}_{1}[1-(\sqrt{2})^{n}]}{1-\sqrt{2}}-\frac{{a}_{1}[1-(\sqrt{2})^{2n}]}{1-\sqrt{2}}}{{a}_{1}•(\sqrt{2})^{n}}$=$\frac{1}{1-\sqrt{2}}$•[($\sqrt{2}$)n+$\frac{16}{(\sqrt{2})^{n}}$-17],
∵($\sqrt{2}$)n+$\frac{16}{(\sqrt{2})^{n}}$≥8,当且仅当($\sqrt{2}$)n=$\frac{16}{(\sqrt{2})^{n}}$即n=4时取等号,
所以当m=4时,Tn有最大值.
故选C.

点评 本题考查了等比数列的前n项和公式与通项及平均值不等式的应用,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设等差数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}n{a_n}+{a_n}$-c(c是常数,n∈N*),a2=6.
(I)求c的值及数列{an}的通项公式;
(II)设bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=3x-3ax+b且$f(1)=\frac{8}{3}$,$f(2)=\frac{80}{9}$.
(1)求a,b的值;        
 (2)判断f(x)的奇偶性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)x-2a,x<1}\\{lnx,x≥1}\end{array}\right.$的值域为R,则实数a的范围是(  )
A.[-1,1]B.(-1,1]C.[1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|1≤x<6},B={x|5<x<10},C={x|ax+1>0}.
(Ⅰ)求A∪B,(∁RA)∩B;
(Ⅱ)若A∩C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题P:?n∈N,n2≤2n,则¬P为(  )
A.?n∈N,n2≤2nB.?n∈N,n2>2nC.?n∈N,n2>2nD.?n∈N,n2=2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α是△ABC的一个内角,且$sinα+cosα=\frac{{\sqrt{2}}}{2}$,则sin2α的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:
月平均气温x(°C)171382
月销售量y(件)24334055
(1)算出线性回归方程$\widehat{y}$=bx+a; (a,b精确到十分位)
(2)气象部门预测下个月的平均气温约为6℃,据此估计,求该商场下个月毛衣的销售量.
参考公式:线性回归方程为,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\left\{\begin{array}{l}{x-5(x≥7)}\\{f(x+3)(x<7)}\end{array}\right.$(x∈N),那么f(3)等于(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案