精英家教网 > 高中数学 > 题目详情
2.设等差数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}n{a_n}+{a_n}$-c(c是常数,n∈N*),a2=6.
(I)求c的值及数列{an}的通项公式;
(II)设bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$,求数列{bn}的前n项和为Tn

分析 (I)利用递推关系、等差数列的通项公式即可得出;
(II)利用“错位相减法”、等比数列的前n项和公式即可得出.

解答 解:(Ⅰ)由已知Sn=$\frac{1}{2}n{a_n}+{a_n}$-c(c是常数,n∈N*),
所以当n=1时,S1=$\frac{1}{2}$a1+a1-c,
解得a1=2c,
当n=2时,S2=a2+a2-c,
即a1+a2=a2+a2-c,
解得a2=3c,∴3c=6,
解得c=2.
则a1=4,数列{an}的公差d=a2-a1=2,
∴an=a1+(n-1)d=2n+2.
(Ⅱ)因为bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$=$\frac{2n+2-2}{{2}^{n+1}}$=$\frac{n}{{2}^{n}}$,
所以Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,①
$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+$\frac{3}{{2}^{4}}$+…+$\frac{n}{{2}^{n+1}}$,②
①-②,得$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$,
所以Tn=2-$\frac{2+n}{{2}^{n}}$.

点评 本题考查了递推关系、“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax,a>0.
(1)记f(x)的极小值为g(a),求g(a)的最大值;
(2)若对任意实数x恒有f(x)≥0,求f(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,是奇函数,又在定义域内为减函数的是(  )
A.$y={({\frac{1}{2}})^x}$B.$y=\frac{2}{x}$C.y=-2x3D.$y={log_2}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=lg(1-x2),集合A为函数f(x)的定义域,集合B=(-∞,0]则图中阴影部分表示的集合为(  )
A.[-1,0]B.(-1,0)C.(-∞,-1)∪[0,1)D.(-∞,-1]∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥4}\\{f(x+3),x<4}\end{array}\right.$,则f(2)=32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列图形中,表示函数图象的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列说法:
①集合A={x∈Z|x=2k-1,k∈Z}与集合B={x∈z|x=2k+3,k∈Z}是相等集合;
②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③函数y=$\frac{1}{{x}^{2}}$的单调减区间是(-∞,0)∪(0,+∞);
④不存在实数m,使f(x)=x2+mx+1为奇函数;
⑤若f(x+y)=f(x)f(y),且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2016)}{f(2015)}$=2016.
其中正确说法的序号是(  )
A.①②③B.②③④C.①③⑤D.①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知二次函数的图象开口向上,且满足f(2013+x)=f(2013-x),x∈R,则f(2011)与f(2014)的大小关系为f(2011)>f(2014).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是等比数列,公比q=$\sqrt{2}$,Sn为{an}的前n项和.记Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,设Tm为数列{Tn}的最大项,则m=(  )
A.2B.1C.4D.3

查看答案和解析>>

同步练习册答案