精英家教网 > 高中数学 > 题目详情
11.已知二次函数的图象开口向上,且满足f(2013+x)=f(2013-x),x∈R,则f(2011)与f(2014)的大小关系为f(2011)>f(2014).

分析 由已知可得函数图象关于直线x=2013对称,此时距离对称轴远的自变量值,对应的函数值大,进而得到答案.

解答 解:∵二次函数的图象开口向上,且满足f(2013+x)=f(2013-x),
故函数图象关于直线x=2013对称,
此时距离对称轴远的自变量值,对应的函数值大,
故f(2011)>f(2014),
故答案为:f(2011)>f(2014)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的离心率e=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设等差数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}n{a_n}+{a_n}$-c(c是常数,n∈N*),a2=6.
(I)求c的值及数列{an}的通项公式;
(II)设bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集为实数集R,集合A={x|y=$\sqrt{x-1}$+$\sqrt{3-x}$},B={x|2x>4}
( I)分别求A∪B,A∩B,(∁UB)∪A
( II)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前项和为Sn,若$\overrightarrow{OB}$=a1005O$\overrightarrow{OA}$+a1006$\overrightarrow{OC}$,且A、B、C三点共线(该直线不经过坐标原点O),则S2010=(  )
A.1005B.1010C.2009D.2010

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点M(-2,0)的直线l与双曲线x2-2y2=2交于P1,P2线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于(  )
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=3x-3ax+b且$f(1)=\frac{8}{3}$,$f(2)=\frac{80}{9}$.
(1)求a,b的值;        
 (2)判断f(x)的奇偶性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)x-2a,x<1}\\{lnx,x≥1}\end{array}\right.$的值域为R,则实数a的范围是(  )
A.[-1,1]B.(-1,1]C.[1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:
月平均气温x(°C)171382
月销售量y(件)24334055
(1)算出线性回归方程$\widehat{y}$=bx+a; (a,b精确到十分位)
(2)气象部门预测下个月的平均气温约为6℃,据此估计,求该商场下个月毛衣的销售量.
参考公式:线性回归方程为,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

同步练习册答案