精英家教网 > 高中数学 > 题目详情
17.若函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥4}\\{f(x+3),x<4}\end{array}\right.$,则f(2)=32.

分析 由已知得f(2)=f(2+3)=f(5),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥4}\\{f(x+3),x<4}\end{array}\right.$,
∴f(2)=f(2+3)=f(5)=25=32.
故答案为:32.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\sqrt{2}sin({ωx+φ})({ω>0})$的图象关于直线$x=\frac{π}{2}$对称且$f({\frac{3π}{8}})=1,f(x)$在区间$[{-\frac{3π}{8},-\frac{π}{4}}]$上单调,则ω可取数值的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知异面直线a,b所成角为60度,A为空间一点,则过点A与a,b都成60度角的直线有(  )条.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.己知实数x,y满足条件$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y-25≤0\\ x≥1\end{array}\right.$,则x+y的取值范围是[2,7].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,$\overrightarrow{AB}$=2$\overrightarrow{BC},\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则下列等式中成立的是(  )
A.$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow{b}$B.$\overrightarrow{c}$=3$\overrightarrow{b}$-$\overrightarrow{a}$C.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$D.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设等差数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}n{a_n}+{a_n}$-c(c是常数,n∈N*),a2=6.
(I)求c的值及数列{an}的通项公式;
(II)设bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知奇函数f(x)在区间[1,6]是增函数,且最大值为10,最小值为4,则其在[-6,-1]上的最大值、最小值分别是(  )
A.-4,-10B.4,-10C.10,4D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前项和为Sn,若$\overrightarrow{OB}$=a1005O$\overrightarrow{OA}$+a1006$\overrightarrow{OC}$,且A、B、C三点共线(该直线不经过坐标原点O),则S2010=(  )
A.1005B.1010C.2009D.2010

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|1≤x<6},B={x|5<x<10},C={x|ax+1>0}.
(Ⅰ)求A∪B,(∁RA)∩B;
(Ⅱ)若A∩C=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案