精英家教网 > 高中数学 > 题目详情
1.给出下列命题:
①函数f(x)=loga(2x-1)-1的图象过定点(1,0);
②已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2-|x|;
③若${log_a}\frac{1}{2}<1$,则a的取值范围是$(0,\frac{1}{2})∪(2,+∞)$;
其中所有正确命题的序号是②.

分析 求出函数f(x)=loga(2x-1)-1的图象所过定点,可判断①;求出函数的解析式,可判断②;求出满足条件的a的范围,可判断③.

解答 解:当x=1时,函数f(x)=-1恒成立,
故函数f(x)=loga(2x-1)-1的图象过定点(1,-1),故①错误;
∵函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),
∴当x>0时,f(x)=x(x-1),
综上可得:f(x)的解析式为f(x)=x2-|x|;
故②正确;
若${log_a}\frac{1}{2}<1$,则a∈$(0,\frac{1}{2})∪(1,+∞)$,故③错误;
故答案为:②

点评 本题以命题的真假判断与应用为载体,考查了对数函数的图象和性质,函数的奇偶性,函数解析式等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC的中点,它的正(主)视图和侧(左)视图如图所示.

(Ⅰ)求三棱锥P-ABD的体积.
(Ⅱ)在∠ACB的平分线所在直线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个函数:
①y=3-x;②y=2x-1(x>0);③y=x2+2x-10,;④$\left\{\begin{array}{l}{x(x≤0)}\\{\frac{1}{x}(x>0)}\end{array}\right.$.
其中定义域与值域相同的函数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点M(-2,0)的直线l与双曲线x2-2y2=2交于P1,P2线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于(  )
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿△ABD沿BD折起,使平面ABD⊥平面BCD,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,则三棱锥A-BCD的外接球的半径为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别是a,b,c,若$\frac{c}{sinB}$+$\frac{b}{sinC}$=2a,b=$\sqrt{2}$,则△ABC面积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=a$\sqrt{1-{x}^{2}}$+$\sqrt{1+x}$+$\sqrt{1-x}$(a∈R).
(Ⅰ)设t=$\sqrt{1+x}$+$\sqrt{1-x}$,求t的取值范围,并把f(x)表示为t的函数φ(t);
(Ⅱ)记f(x)的最大值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数
①f(x)=3x+1      ②f(x)=($\frac{1}{2}$)x+1
③f(x)=x2+1      ④f(x)=$\left\{\begin{array}{l}{-\frac{1}{x},x<-1}\\{{x}^{2}+4x+5,x≥-1}\end{array}\right.$ 
其中是“H函数”的有①④(填序号)

查看答案和解析>>

同步练习册答案