分析 不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1-x2)[f(x1)-f(x2)]>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.
解答 解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,
∴不等式等价为(x1-x2)[f(x1)-f(x2)]≥0恒成立,
即函数f(x)是定义在R上的不减函数(即无递减区间);
①f(x)在R递增,符合题意;
②f(x)在R递减,不合题意;
③f(x)在(-∞,0)递减,在(0,+∞)递增,不合题意;
④f(x)在R递增,符合题意;
故答案为:①④.
点评 本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |α(x)|+|β(x)| | B. | α2(x)+β2(x) | C. | ln[1+α(x)•β(x)] | D. | $\frac{{α}^{2}(x)}{β(x)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AC}$ | C. | $\frac{3}{2}$$\overrightarrow{AC}$ | D. | 2$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | -$\frac{3}{2}$ | C. | -$\frac{5}{2}$ | D. | -$\frac{1}{2}$或-$\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{1}{2},\frac{3}{4})$ | B. | $[{-\frac{1}{2},\frac{3}{4}}]$ | C. | $(-∞,\frac{1}{2}]$ | D. | $(-\frac{1}{2},0)∪(0,+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{2}$或2 | C. | $\frac{1}{2}$或2 | D. | $\frac{1}{2}或\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com