分析 (Ⅰ)将三角函数进行化简,结合对称中心的方程即可求函数f(x)的对称中心;
(Ⅱ)利用两角和差的正弦公式以及正弦定理进行化简即可.
解答 解:(Ⅰ)f(x)=sin(2x+$\frac{π}{6}$)+sin2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1-cos2x}{2}-\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x
所以f(x)对称中心是($\frac{kπ}{2}$,0),k∈Z.
(Ⅱ)由f($\frac{A}{2}$)=$\frac{1}{2}$,得f($\frac{A}{2}$)=$\frac{\sqrt{3}}{2}$sinA=$\frac{1}{2}$,
即sinA=$\frac{\sqrt{3}}{3}$,
若cosA=$\frac{\sqrt{6}}{3}$,
而sin(A+C)=$\frac{\sqrt{3}}{3}cosC+\frac{\sqrt{6}}{3}sinC$
又$\sqrt{3}$sin(A+C)=2cosC,
所以cosC=$\sqrt{2}$sinC,
所以cosC=$\frac{\sqrt{6}}{3}$,
所以sinB=sin(A+C)=$\frac{2}{\sqrt{3}}$cosC=$\frac{2\sqrt{2}}{3}$ (10分)
由正弦定理得:b=$\frac{asinB}{sinA}$=4$\sqrt{2}$.(12分)
点评 本题主要考查三角函数的恒等变换以及三角函数的图象和性质,利用两角和差的正弦公式以及正弦定理是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②③ | B. | ①②③ | C. | ①②④ | D. | ①③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “若$x=\frac{π}{3}$,则$sinx=\frac{{\sqrt{3}}}{2}$”的逆命题为真 | |
| B. | a,b,c为实数,若a>b,则ac2>bc2 | |
| C. | 命题p:?x∈R,使得x2+x-1<0,则?p:?x∈R,使得x2+x-1>0 | |
| D. | 若命题?p∧q为真,则p假q真 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com