精英家教网 > 高中数学 > 题目详情
已知三个向量
a
b
c
两两所夹的角都是120°,且|
a
|=1,|
b
|=2,|
c
|=3,求向量
a
+
b
与向量
c
的夹角θ的值.
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:分别求出向量a,b,c两两的数量积,以及向量a,b的和的模,再由向量的夹角公式和范围,即可计算得到.
解答: 解:三个向量
a
b
c
两两所夹的角都是120°,
且|
a
|=1,|
b
|=2,|
c
|=3,
a
b
=1×2×cos120°=-1,
b
c
=2×3×cos120°=-3,
a
c
=1×3×cos120°=-
3
2

则|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
1+4-2
=
3

a
+
b
c
=
a
c
+
b
c
=-
9
2

则cosθ=
(
a
+
b
)•
c
|
a
+
b
|•|
c
|
=
-
9
2
3
×3
=-
3
2

由于0≤θ≤π,
则有θ=
6
点评:本题考查平面向量的数量积的定义和夹角公式,考查向量的平方等于模的平方,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=4x焦点F的直线与抛物线交于A,B两点,如果
AF
=2
FB
,则直线AB的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD的四个顶点是A(2,3),B(1,-1),C(-1,-2),D(-2,2),求四边形ABCD的四边形所在直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图所示的多面体ABCDEF中,底面ABCD是边长为2的正方形,DE⊥平面ABCD,BF∥DE,且BF=2DE=4.
(1)求多面体ABCDEF的体积;
(2)在棱长FC上是否存在一点P,使EP∥ABCD?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,0),B(2,0),P是圆C:(x+3)2+(y-4)2=9上一动点.
(1)求△PAB的重心G的轨迹;
(2)求|PA|2+|PB|2的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:M∈{(x,y)||x|+|x-2|+
y2+2y+2
≤3};q:M∈{(x,y)|(x-1)2+y2<r2}(r>0).如果p是q的充分但不必要条件,则r的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(2α+β)=3sinβ,求证:tan(α+β)=2tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,直线l的参数方程为
x=2+
2
2
t
y=1+
2
2
t
(t为参数),在极坐标系(以原点为极点,x轴的正半轴为极轴建立极坐标系)中,曲线C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ

(1)求曲线C的直角坐标方程;
(2)设曲线C与直线l交于A、B两点,若点P的坐标为(2,1),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生参加北京某大学的自主招生考试,须依次参加A、B、C、D四项测试.如果前三项测试中有两项不合格或第四项不合格,则该考生被淘汰,学生被淘汰或参加完四次测试考试即结束.考生未被淘汰时,必须参加下面的考试,已知每项考试相互独立,A、B、C三项考试每项不合格的概率均为
1
3
,第四项考试不合格的概率为
1
4

(Ⅰ)求恰好在第三项测试结束时能确定该生被淘汰的概率;
(Ⅱ)求该生被录取的概率.

查看答案和解析>>

同步练习册答案