精英家教网 > 高中数学 > 题目详情
6.己知复数z=4-2i,其中i是虚数单位,当复数(z+ai)2在复平面上对应的点在第一象限时,求实数a的取值范围.

分析 利用复数的运算法则及其几何意义即可得出.

解答 解:(z+ai)2=(4-2i+ai)2=[4+(a-2)i]2=16-(a-2)2+8(a-2)i,)
而它在复平面上对应的点在第一象限,所以满足$\left\{\begin{array}{l}16-{(a-2)^2}>0\\ 8(a-2)>0\end{array}\right.$,
解得2<a<6.

点评 本题考查了复数的运算法则、乘法公式、复数的几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-|x|+3a-1,(a为实常数).
(1)当a=0时,求不等式f(2x)+2≥0的解集;
(2)当a<0时,求函数f(x)的最大值;
(3)若a>0,设f(x)在区间[1,2]的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的两个相邻零点的距离为$\frac{π}{2}$,则该函数的图象(  )
A.关于点($\frac{π}{4}$,0)对称B.关于直线x=$\frac{π}{8}$对称
C.关于点($\frac{π}{8}$,0)对称D.关于直线x=$\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个平面将空间分成2部分;两个平面将空间分成3或4部分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z=(a2+2a-3)+(a-3)i为纯虚数(i为虚数单位),则a=(  )
A.-3B.-3或1C.3或-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于函数f(x)=lnx的定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0
上述结论中正确结论的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x}(x≤0)}\\{{x^2}(x>0)}\end{array}}$,那么f[f(-1)]的值为(  )
A.$\frac{1}{4}$B.4C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知首项为$\frac{3}{2}$的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn=Sn+$\frac{1}{S_n}$(n∈N*),求数列{Tn}的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2lnx-x2-mx.
(1)当m=0时,求函数f(x)的最大值;
(2)函数f(x)与x轴交于两点A(x1,0),B(x2,0)且0<x1<x2,证明:f'($\frac{1}{3}$x1+$\frac{2}{3}$x2)<0.

查看答案和解析>>

同步练习册答案