精英家教网 > 高中数学 > 题目详情

【题目】如图,是正方体的棱的中点,下列命题中真命题是( )

A.点有且只有一条直线与直线都相交

B.点有且只有一条直线与直线都垂直

C.点有且只有一个平面与直线都相交

D.点有且只有一个平面与直线都平行

【答案】ABD

【解析】

不在这两异面直线中的任何一条上,所以,过点有且只有一条直线与直线都相交, A正确.过点有且只有一条直线与直线都垂直, B正确.过点有无数个平面与直线都相交,C不正确.过点有且只有一个平面与直线都平行,D正确.

解:直线 是两条互相垂直的异面直线,点不在这两异面直线中的任何一条上,如图所示:

的中点,则,且,设交于,则点 共面,

直线必与直线相交于某点

所以,过点有且只有一条直线与直线都相交;故A正确.

点有且只有一条直线与直线都垂直,此垂线就是棱,故B正确.

点有无数个平面与直线都相交,故C不正确.

点有且只有一个平面与直线都平行,此平面就是过点与正方体的上下底都平行的平面,故D正确.

故选:ABD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥PABCD的三视图如下图所示,E是侧棱PC上的动点.

1)求证:BD⊥AE

2)若点EPC的中点,求二面角DAEB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,过F的直线与抛物线交于AB两点,点O为坐标原点,则下列命题中正确的个数为(

面积的最小值为4

②以为直径的圆与x轴相切;

③记的斜率分别为,则

④过焦点Fy轴的垂线与直线分别交于点MN,则以为直径的圆恒过定点.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节期间,武汉市爆发了新型冠状病毒肺炎疫情,在党中央的坚强领导下,全国人民团结一心,众志成城,共同抗击疫情.某中学寒假开学后,为了普及传染病知识,增强学生的防范意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分100),竞赛奖励规则如下,得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其他学生不得奖.教务处为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图.

1)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;

2)若该校所有参赛学生的成绩近似服从正态分布,其中为样本平均数的估计值,利用所得正态分布模型解决以下问题:

(i)若该校共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数)

(ii)若从所有参赛学生中(参赛学生数大于10000)随机抽取3名学生进行座谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和均值.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是等边三角形,在底面ABC上的射影为△ABC的重心G.

1)已知,证明:平面平面

2)已知平面与平面ABC所成的二面角为60°,G到直线AB的距离为a,求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱,中,侧面是菱形,中点,平面,平面与棱交于点

1)求证:四边形为平行四边形;

2)若与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

⑴当时,求函数的极值;

⑵若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和菱形所在的平面相互垂直,的中点.

1)求证:平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,当时,证明:

2)若当时,,求的取值范围.

查看答案和解析>>

同步练习册答案