精英家教网 > 高中数学 > 题目详情

【题目】已知函数

⑴当时,求函数的极值;

⑵若存在与函数的图象都相切的直线,求实数的取值范围.

【答案】(1)时,函数取得极小值为,无极大值;(2)

【解析】试题分析:(1)通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是

试题解析

(1)函数的定义域为

时,

所以

所以当时,,当时,

所以函数在区间单调递减,在区间单调递增,

所以当时,函数取得极小值为,无极大值;

(2)设函数上点与函数上点处切线相同,

所以

所以,代入得:

,则

不妨设则当时,,当时,

所以在区间上单调递减,在区间上单调递增,

代入可得:

,则恒成立,

所以在区间上单调递增,又

所以当,即当,

又当

因此当时,函数必有零点;即当时,必存在使得成立;

即存在使得函数上点与函数上点处切线相同.

又由得:

所以单调递减,因此

所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有一个根,则实数m的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育运动时间在上的学生评价为“课外体育达标”.

平均每天锻炼的时间(分钟)

总人数

20

36

44

50

40

10

请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?

课外体育不达标

课外体育达标

合计

20

110

合计

从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求圆心在直线且与直线相切于点的圆的方程

(2)求与圆外切于点且半径为的圆的方程.

【答案】(1)(2).

【解析】试题分析:

(1)由题意可得圆的一条直径所在的直线方程为据此可得圆心,半径则所求圆的方程为.

(2)圆的标准方程为,得该圆圆心为,半径为,两圆连心线斜率.设所求圆心为结合弦长公式可得.则圆的方程为.

试题解析:

(1)过点且与直线垂直的直线为

.

即圆心,半径

所求圆的方程为.

(2)圆方程化为,得该圆圆心为,半径为,故两圆连心线斜率.设所求圆心为

.

.

点睛:求圆的方程,主要有两种方法:

(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.

(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.

型】解答
束】
20

【题目】如图所示,平面在以为直径的为线段的中点在弧.

(1)求证:平面平面

(2)求证:平面平面

(3)设二面角的大小为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱柱中,侧面为菱形,.

(Ⅰ)证明:

(Ⅱ)若AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列满足,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数).

1)若,写出的单调递增区间(直接写结果)

2)若,设在区间的最小值为,求的表达式;

3)设,若函数在区间上是增函数,求实数的取值范围.

参考结论:函数为常数),时,上递增;时,上递减,上递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量主要受污染物排放量及大气扩散等因素的影响,某市环保监测站2014年10月连续10天(从左到右对应1号至10号)采集该市某地平均风速及空气中氧化物的日均浓度数据,制成散点图如图所示.

(Ⅰ)同学甲从这10天中随机抽取连续5天的一组数据,计算回归直线方程.试求连续5天的一组数据中恰好同时包含氧化物日均浓度最大与最小值的概率;

(Ⅱ)现有30名学生,每人任取5天数据,对应计算出30个不同的回归直线方程.已知30组数据中有包含氧化物日均浓度最值的有14组.现采用这30个回归方程对某一天平均风速下的氧化物日均浓度进行预测,若预测值与实测值差的绝对值小于2,则称之为“拟合效果好”,否则为“拟合效果不好”.根据以上信息完成下列2×2联表,并分析是否有95%以上的把握说拟合效果与选取数据是否包含氧化物日均浓度最值有关.

预测效果好

拟合效果不好

合计

数据有包含最值

5

数据无包含最值

4

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|x22x30}B{x|x22mxm240xRmR}

(1)AB[0,3],求实数m的值;

(2)ARB,求实数m的取值范围.

查看答案和解析>>

同步练习册答案