精英家教网 > 高中数学 > 题目详情
16.直线2x-3y+1=0与圆(x-1)2+(y-1)2=4相交于A、B两点,则|AB|=4.

分析 由圆C的方程,找出圆心的坐标及半径r,利用点到直线的距离公式求出圆心到直线l的距离d,根据垂径定理及勾股定理即可求出|AB|的长.

解答 解:由圆(x-1)2+(y-1)2=4,得到圆心(1,1),半径r=2,
∴圆心到直线l:2x-3y+1=0的距离d=$\frac{0}{\sqrt{4+9}}$=0,即AB是直径,
则|AB|=4.
故答案为:4.

点评 此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,以及勾股定理,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若实数m的取值使函数f(x)在定义域上有两个极值点,则叫做函数f(x)具有“凹凸趋向性”,已知f′(x)是函数f(x)的导数,且f′(x)=$\frac{m}{x}$-2lnx,当函数f(x)具有“凹凸趋向性”时,m的取值范围是(  )
A.(-$\frac{2}{e}$,+∞)B.(-$\frac{2}{e}$,0)C.(-∞,-$\frac{2}{e}$)D.(-$\frac{2}{e}$,-$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2(a∈R),g(x)=2lnx.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[${\sqrt{2}$,e]上有两个不等实数根,求实数a的取值范围.
(可能用到的参考数据:ln2≈0.7,$\frac{1}{e^2}$≈0.135).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若数列{an}是等差数列,首项a1<0,a203+a204>0,a203a204<0,则使前n项和Sn<0的最大自然数n是(  )
A.405B.404C.407D.406

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=$\frac{2}{3}$,a=$\sqrt{5}$,c=2,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,正三棱锥A-BCD中,已知AB=BC=$\sqrt{6}$.
(1)求证:AD⊥BC;
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overline{a}$=(-1,2),$\overrightarrow{b}$=(m2-2,2m),若$\overrightarrow{a}$与$\overrightarrow{b}$共线且方向相反,则m的值为(  )
A.1 或-2B.2C.-2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,则该顾客在3次抽奖中至多有两次获得一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),且x∈[0,1]时,f(x)=-ln(x2+e),则f(2017)的值等于(  )
A.-ln(e+1)B.-ln(4+e)C.-1D.-ln(e+$\frac{1}{4}$)

查看答案和解析>>

同步练习册答案