分析 (1)先确定函数的定义域然后求导数F′(x),在函数的定义域内解不等式F′(x)>0和F′(x)<0,求出单调区间.
(2)方程f(x)=g(x)在区间[$\sqrt{2}$,e]上有两个不等解等价于 a=$\frac{2lnx}{{x}^{2}}$在[$\sqrt{2}$,e]上有两个不等解,令h(x)=$\frac{2lnx}{{x}^{2}}$,利用导数研究其单调性,从而得出它的最小值,即可得到a的取值范围.
解答 解:(1)F(x)=ax2-2lnx (x>0)所以 F′(x)=$\frac{2({ax}^{2}-1)}{x}$(x>0)
所以当a>0时,函数在(0,$\frac{1}{\sqrt{a}}$)上是减函数,在 ($\frac{1}{\sqrt{a}}$,+∞)上是增函数,
a≤0时,函数在(0,+∞)上是减函数.
(2)方程f(x)=g(x)在区间[$\sqrt{2}$,e]上有两个不等解,
等价于 a=$\frac{2lnx}{{x}^{2}}$在[$\sqrt{2}$,e]上有两个不等解
令h(x)=$\frac{2lnx}{{x}^{2}}$,则 h′(x)=$\frac{2x(1-2lnx)}{{x}^{4}}$,
故函数h(x)在($\sqrt{2}$,$\sqrt{e}$)上是增函数,在 ($\sqrt{e}$,e)上是减函数.
所以 h(x)max=h($\sqrt{e}$)=$\frac{1}{e}$,
又因为h(e)=$\frac{2}{{e}^{2}}$<h(2)=$\frac{ln2}{2}$=h ($\sqrt{2}$)
故 h(x)min=h (e)=$\frac{2}{{e}^{2}}$,
所以$\frac{2}{{e}^{2}}$≤a<$\frac{1}{e}$.
即a的取值范围:$\frac{2}{{e}^{2}}$≤a<$\frac{1}{e}$.
点评 本小题主要考查函数的导数,单调性,函数的零点与方程根的关系等基础知识,考查综合利用数学知识分析问题、解决问题的能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 随t的变化而变化 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∥β,l?α,n?β,则l∥n | B. | 若α⊥β,l?α,则l⊥β | ||
| C. | 若l⊥α,l∥β,则α⊥β | D. | 若l⊥n,m⊥n,则l∥m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{5}{2}$) | B. | ($\frac{5}{2}$,+∞) | C. | (-1,$\frac{5}{2}$) | D. | ($\frac{5}{2}$,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{4}$ | B. | $\frac{9}{16}$ | C. | $\frac{9}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com