精英家教网 > 高中数学 > 题目详情
5.已知$\overline{a}$=(-1,2),$\overrightarrow{b}$=(m2-2,2m),若$\overrightarrow{a}$与$\overrightarrow{b}$共线且方向相反,则m的值为(  )
A.1 或-2B.2C.-2D.-1或2

分析 利用向量共线定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,∴2(m2-2)-(-1)×2m=0,
化为:m2+m-2=0,
解得m=-2或m=1.
当m=1时,$\overrightarrow{b}$=(-1,2)=$\overrightarrow{a}$,共线且方向相同,舍去.
当m=-2时,$\overrightarrow{b}$=(2,-4)=-2$\overrightarrow{a}$,共线且方向相反,满足题意.
∴m=-2
故选:C.

点评 本题考查向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=(x2-$\frac{1}{2}$x-$\frac{1}{2}$)ex,则方程4e2[f(x)]2+tf(x)-9$\sqrt{e}$=0(t∈R)的根的个数为(  )
A.2B.3C.4D.随t的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)为定义在R上的增函数,若对于任意的x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求f(0),并证明f(x)为R上的奇函数;
(2)若f(1)=2,解关于x的不等式f(x)-f(3-x)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线2x-3y+1=0与圆(x-1)2+(y-1)2=4相交于A、B两点,则|AB|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:“?x∈N,都有$\frac{1}{{x}^{2}+x+1}$>0”则¬p为(  )
A.?x∈N,使得$\frac{1}{{x}^{2}+x+1}$≤0B.?x0∈N,使得$\frac{1}{{{x}_{0}}^{2}+{x}_{0}+1}$≤0
C.?x∈N,使得x2+x+1≤0D.?x0∈N,使得x02+x0+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在四棱锥P-ABCD中,AD∥BC,∠ABC=∠APB=90°,点M是线段AB上的一点,且PM⊥CD,AB=BC=2PB=2AD=4BM.
(1)证明:面PAB⊥面ABCD;
(2)求直线CM与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数x,y满足$\left\{\begin{array}{l}x-2≤0\\ y-1≤0\\ x+2y-2≥0\end{array}\right.,则z={2^{x-y}}$的取值范围是(  )
A.[$\frac{1}{4}$,$\frac{1}{2}$]B.[$\frac{1}{4}$,2]C.[$\frac{1}{2}$,4]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知f(1-$\sqrt{x}$)=x,求f(x)的解析式;
(2)已知一次函数y=f(x)满足f(f(x))=4x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,最小值为4的是(  )
A.y=$\frac{x}{2}$+$\frac{8}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.y=$\sqrt{{x}^{2}+1}$+$\frac{2}{\sqrt{{x}^{2}+1}}$

查看答案和解析>>

同步练习册答案