精英家教网 > 高中数学 > 题目详情
15.下列函数中,最小值为4的是(  )
A.y=$\frac{x}{2}$+$\frac{8}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.y=$\sqrt{{x}^{2}+1}$+$\frac{2}{\sqrt{{x}^{2}+1}}$

分析 根据基本不等式的口诀:一正二定三相等,对各个选项逐一化简判断即可.

解答 解:A、当x>0时,$\frac{x}{2}+\frac{8}{x}$≥2$\sqrt{\frac{x}{2}•\frac{8}{x}}$=4,当且仅当$\frac{x}{2}=\frac{8}{x}$时取等号,
当x<0时,$\frac{x}{2}+\frac{8}{x}$≤-4,当且仅当$\frac{x}{2}=\frac{8}{x}$时取等号,A错误;
B、当0<x<π时,sinx>0,y=sinx+$\frac{4}{sinx}$≥2$\sqrt{sinx•\frac{4}{sinx}}$=4,
当且仅当sinx=$\frac{4}{sinx}$时取等号,此时sinx=2,由sinx≤1知,B不正确;
C、y=ex+4e-x≥2$\sqrt{{e}^{x}•4{e}^{-x}}$=4,
当且仅当ex=4e-x,即ex=2时取最小值4,C正确;
D、y=$\sqrt{{x}^{2}+1}+\frac{2}{\sqrt{{x}^{2}+1}}$≥2$\sqrt{\sqrt{{x}^{2}+1}•\frac{2}{\sqrt{{x}^{2}+1}}}$=$2\sqrt{2}$,
当且仅当$\sqrt{{x}^{2}+1}=\frac{2}{\sqrt{{x}^{2}+1}}$时取等号,函数的最小值是$2\sqrt{2}$,D错误.
故选:C.

点评 本题考查了基本不等式在求最值中的应用,牢记“一正二定三相等”是解题的关键,考查了化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知$\overline{a}$=(-1,2),$\overrightarrow{b}$=(m2-2,2m),若$\overrightarrow{a}$与$\overrightarrow{b}$共线且方向相反,则m的值为(  )
A.1 或-2B.2C.-2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设p:实数a满足不等式3a≤9,q:函数f(x)=$\frac{1}{3}$x3+$\frac{{3({3-a})}}{2}$x2+9x无极值点.
(1)若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围;
(2)已知“p∧q”为真命题,并记为r,且t:a2-(2m+$\frac{1}{2}}$)a+m(m+$\frac{1}{2}}$)>0,若r是¬t的必要不充分条件,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),且x∈[0,1]时,f(x)=-ln(x2+e),则f(2017)的值等于(  )
A.-ln(e+1)B.-ln(4+e)C.-1D.-ln(e+$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}中,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$(n∈N*),若a7=$\frac{1}{2}$,则a5=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列四个函数:①f(x)=2x;②f(x)=$\frac{1}{x}$;③f(x)=lg(x2+2);④f(x)=cosπx.
其中是“1的饱和函数”的所有函数的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′:AA′=3:4,则S△A′B′C′:S△ABC=9:49.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an}的前n项和Sn能取到最大值,且满足:a10+a11<0,a10•a11<0对于以下几个结论:
①数列{an}是递减数列;    
②数列{Sn}是递减数列;
③数列{Sn}的最大项是S10; 
④数列{Sn}的最小的正数是S19
其中正确的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如下表:
每件产品A每件产品B
研制成本、搭载
费用之和(万元)
2030计划最大资金额
300万元
产品重量(千克)105最大搭载重量110千克
预计收益(万元)8060
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.

查看答案和解析>>

同步练习册答案