精英家教网 > 高中数学 > 题目详情
9.已知集合A={x|x2-x-6>0),B={x|-1≤x≤4),则A∩B=(  )
A.[-l,3)B.(3,4]C.[-1,2)D.(2,4]

分析 求出A中不等式的解集确定出A,找出A与B的交集即可.

解答 解:由A中不等式变形得:(x-3)(x+2)>0,
解得:x<-2或x>3,即A=(-∞,-2)∪(3,+∞),
∵B=[-1,4],
∴A∩B=(3,4],
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.利用函数y=sinx的图象,求满足不等式sinx≥$\frac{\sqrt{2}}{2}$的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.俗话说:“三个臭皮匠顶个诸葛亮”.但由于臭皮匠太“臭”,三个往往还顶不了一个诸葛亮.已知诸葛亮单独解出某道奥数题的概率为0.8,每个臭皮匠单独解出该道奥数题的概率是0.3.试问,至少要几个臭皮匠能顶个诸葛亮?5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=1-|2x-m|,x∈[0,1].若函数f(x)图象关于直线x=$\frac{1}{2}$对称,求曲线段y=f(f(x))的长度为$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ax+3-|2x-1|.
(Ⅰ)若a=1,解不等式f(x)≤2;
(Ⅱ)若函数有最大值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$f(x)=sin({ωx+\frac{π}{6}})({ω>0})$的最小正周期为π,则f(x)的单调递增区间可以是(  )
A.$({-\frac{π}{3},\frac{π}{6}})$B.$({-\frac{π}{12},\frac{5π}{12}})$C.$({\frac{5π}{12},\frac{11π}{12}})$D.$({\frac{π}{6},\frac{2π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|2x-1|-|x+2|.
(1)解不等式:f(x)>0;
(2)若f(x)+3|x+2|≥|a-1|对一切实数x均成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.${C}_{2014}^{0}$•20+${C}_{2014}^{2}$•22+…+${C}_{2014}^{2014}$•22014=$\frac{{3}^{2014}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设等比数列{an}的前n项和为Sn,若a2013=3S2012+2014,a2012=3S2011+2014,则公比q等于(  )
A.4B.1或4C.2D.1或2

查看答案和解析>>

同步练习册答案