| A. | $({-\frac{π}{3},\frac{π}{6}})$ | B. | $({-\frac{π}{12},\frac{5π}{12}})$ | C. | $({\frac{5π}{12},\frac{11π}{12}})$ | D. | $({\frac{π}{6},\frac{2π}{3}})$ |
分析 由条件利用正弦函数的周期性求得ω,再利用正弦函数的单调性得出结论.
解答 解:∵函数$f(x)=sin({ωx+\frac{π}{6}})({ω>0})$的最小正周期为π,
∴$\frac{2π}{ω}$=π,求得ω=2,f(x)=sin(2x+$\frac{π}{6}$),
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
则f(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z,
故选:A.
点评 本题主要考查正弦函数的周期性,正弦函数的单调性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2cos(3x+$\frac{2π}{3}$) | B. | f(x)=2sin($\frac{15}{7}x-\frac{5π}{6}$) | ||
| C. | f(x)=2sin(3x-$\frac{π}{6}$) | D. | f(x)=2sin(3x-$\frac{π}{6}$)或f(x)=2sin($\frac{15}{7}x-\frac{5π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)是奇函数 | B. | f(x)在R上单调递增 | C. | f(x)的值域为R | D. | f(x)是周期函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-l,3) | B. | (3,4] | C. | [-1,2) | D. | (2,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 296 | B. | 221 | C. | 225 | D. | 641 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com