精英家教网 > 高中数学 > 题目详情
4.国务院召开青少年校园足球工作电视电话会议,提出教育部将主导校园足球“足球进校园”活动.某市教育部门未了解学生喜欢足球是否与性别有关,在某学校该校50名学生进行了问卷调查,得到了如下的列联表:
 喜欢足球不喜欢足球合计
男生20525
女生101525
合计302050
(Ⅰ)按性别用分层抽样的方法在喜欢足球的学生中抽取6人,求这6人中男生的人数;
(Ⅱ)在上述抽取的6人中随机抽取2人做进一步调查,求恰有1名女生的概率;
(Ⅲ)根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下,认为喜欢足球与性别有关系?
下面的临界值表供参考:
 P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (Ⅰ)根据分层抽样的方法,在喜欢打蓝球的学生中抽6人,先计算了抽取比例,再根据比例即可求出男生应该抽取人数.
(Ⅱ)在上述抽取的6名学生中,女生的有2人,男生4人.女生2人记A,B;男生4人为c,d,e,f,列出其一切可能的结果组成的基本事件个数,通过列举得到满足条件事件数,求出概率.
(Ⅲ)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打足球和性别有关系.

解答 解:(Ⅰ)在喜欢打蓝球的学生中抽6人,则抽取比例为$\frac{6}{30}$=$\frac{1}{5}$,
∴男生应该抽取20×$\frac{1}{5}$=4人….(4分)
(Ⅱ)在上述抽取的6名学生中,女生的有2人,男生4人.女生2人记A,B;男生4人为c,d,e,f,则从6名学生任取2名的所有情况为:(A,B)、(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)、(e,f)共15种情况,其中恰有1名女生情况有:(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f),共8种情况,
故上述抽取的6人中选2人,恰有一名女生的概率概率为P=$\frac{8}{15}$.….(8分)
(Ⅲ)∵K2=$\frac{50×(20×15-10×5)^{2}}{30×20×25×25}$≈8.333>7.879,
那么,我们有99.5%的把握认为是否喜欢打足球是与性别有关系的….(12分)

点评 本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知b是a、c的等差中项,lg(b-5)是lg(a-1)与lg(c-6)的等差中项,又a,b,c三数之和为33,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设三位数n=$\overline{abc}$(即n=100a+10b+c,其中a,b,c∈N*),若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有(  )
A.45个B.81个C.165个D.216个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=x-2sinx在区间[-$\frac{π}{2},\frac{π}{2}$]上的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义在R上的函数φ(x)与g(x)满足:φ(x)+g(x)=ex-x2-2x-2,φ(x)-g(x)=ex+x2+2x-4;(注:e为自然对数的底数,e≈2.78);
(1)求φ(x),g(x)的解析式;
(2)对?x1∈[-1,1],?x2∈[0,1],都有g(x1)+ax1+5≥φ(x2)-x2φ(x2)成立,求实数a的范围;
(3)设f(x)=$\left\{\begin{array}{l}{φ(x),(x>0)}\\{g(x),(x≤0)}\end{array}\right.$,判断方程f[f(x)]=2的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}各项均为正数,其前n项和为Sn满足2Sn=(an+3)(an-2)(n∈N*
(1)求数列{an}的通项公式.
(2)求数列{$\frac{1}{{a}_{2n-1}•{a}_{2n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(1)已知数列an=-n2+13.6n,则当n=7时an取得最大值;
(2)已知a7是数列an=-n2+λn唯一的最大值,则实数λ的取值范围是13<λ<15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.向量$\overrightarrow a,\overrightarrow b$满足|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|=|2$\overrightarrow{a}$+$\overrightarrow{b}$|=1,则$|{\overrightarrow b}$|=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案