精英家教网 > 高中数学 > 题目详情
15.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为(  )
A.2B.3C.4D.5

分析 由题意知,OM是三角形PF1F2的中位线,由|OM|=3,可得|PF2|=6,再由椭圆的定义求出|PF1|的值.

解答 解:如图,

则OM是三角形PF1F2的中位线,
∵|OM|=3,∴|PF2|=6,
又|PF1|+|PF2|=2a=10,
∴|PF1|=4,
故选:C.

点评 本题考查椭圆的定义,以及椭圆的简单性质的应用,判断OM是三角形PF1F2的中位线是解题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-1,0),F2(1,0),点A(1,$\frac{\sqrt{2}}{2}$)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于B,C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.
(1)求椭圆C1的方程;
(2)是否存在满足|$\overrightarrow{P{F}_{1}}$|$+|\overrightarrow{P{F}_{2}}|$=|$\overrightarrow{A{F}_{1}}$|$+|\overrightarrow{A{F}_{2}}|$的点P,若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2+bx+1(a,b为实数),设F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$,若f(-1)=0,且对任意实数x均有f(x)≥0成立,求F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合M={x|x2-2x-3<0},N={x|x2+x+1>0},则M∩N是(  )
A.(-3,1)B.RC.(-1,3)D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若正数a,b满足$\frac{1}{a}$+$\frac{1}{b}$=1,则$\frac{1}{a-1}$+$\frac{4}{b-1}$的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(1+ax)-ax,(其中a为实数,且a≠0).
(1)求函数f(x)的单调区间;
(2)关于x方程f(x)-a=0在[-1,1]上是否有两个不等实根?若有,求实数a的取值范围;若没有,请说明理由;
(3)若数列{an}满足:a1=1,an+1=(1+$\frac{1}{{n}^{2}+n}$)an+$\frac{1}{{2}^{n}}$,n∈N*,证明:对于任意的正整数n,都有an<e2,其中无理数e=2.71828.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.钓鱼岛及其附近海域自古以来就是中国人民进行捕鱼、避风、休息的场所,被誉为深海中的翡翠.某学校就钓鱼岛有关常识随机抽取了16名学生进行测试,用“10分制”以茎叶图方式记录了他们对钓鱼岛的了解程度,分数以小数点前的一位数字为茎,小数点后的一位数字为叶.
(1)指出这组数据的众数和中位数;
(2)若所得分数不低于9.5分,则称该学生对钓鱼岛“非常了解”.求从这16人中随机选取3人,求至多有1人“非常了解”的概率;
(3)以这16人的样本数据来估计该所学校学生的总体数据,若从该所学校(人数可视为很多)任选3人,记ξ表示抽到“非常了解”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.国务院召开青少年校园足球工作电视电话会议,提出教育部将主导校园足球“足球进校园”活动.某市教育部门未了解学生喜欢足球是否与性别有关,在某学校该校50名学生进行了问卷调查,得到了如下的列联表:
 喜欢足球不喜欢足球合计
男生20525
女生101525
合计302050
(Ⅰ)按性别用分层抽样的方法在喜欢足球的学生中抽取6人,求这6人中男生的人数;
(Ⅱ)在上述抽取的6人中随机抽取2人做进一步调查,求恰有1名女生的概率;
(Ⅲ)根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下,认为喜欢足球与性别有关系?
下面的临界值表供参考:
 P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上为减函数,若$f({ln\frac{n}{m}})$+$f({ln\frac{m}{n}})$-2f(1)>0,则$\frac{{{m^2}+{n^2}}}{mn}$的取值范围是(  )
A.(e,+∞)B.[2,e)C.$({e+\frac{1}{e},+∞})$D.$[{2,e+\frac{1}{e}})$

查看答案和解析>>

同步练习册答案