| A. | (e,+∞) | B. | [2,e) | C. | $({e+\frac{1}{e},+∞})$ | D. | $[{2,e+\frac{1}{e}})$ |
分析 先根据对数的运算性质和函数的奇偶性性化简不等式,然后利用函数是偶函数得到不等式f(ln$\frac{m}{n}$)=f(-ln$\frac{n}{m}$),等价为|ln$\frac{n}{m}$|<1f(|lnt|)≤f(1),然后利用函数在区间[0,+∞)上单调递减即可得到不等式的解集从而求解.
解答 :∵函数f(x)是定义在R上的偶函数,
∴f(ln$\frac{m}{n}$)=f(-ln$\frac{n}{m}$)
∴$f({ln\frac{n}{m}})$+$f({ln\frac{m}{n}})$-2f(1)>0可化为$f({ln\frac{n}{m}})$>f(1),
∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减.
∴|ln$\frac{n}{m}$|<1,
∴$\frac{1}{e}<\frac{n}{m}<e$,
又$\frac{{{m^2}+{n^2}}}{mn}$=$\frac{n}{m}+\frac{1}{\frac{n}{m}}$∈[2,e+$\frac{1}{e}$)
故选D.
点评 本题主要考查函数奇偶性和单调性的应用,利用函数是偶函数的性质得到f(a)=f(|a|)是解决偶函数问题的关键.先利用对数的性质将不等式进行化简是解决本题的突破点
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,2) | B. | (0,2] | C. | (0,2) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com