精英家教网 > 高中数学 > 题目详情
15.已知二次函数f(x)=ax2+(2b+1)x-a-2在区间[3,4]上至少有一个零点,则a2+b2的最小值为$\frac{1}{100}$.

分析 把等式看成关于a,b的直线方程:(x2-1)a+2xb+x-2=0,由于直线上一点(a,b)到原点的距离大于等于原点到直线的距离,从而可得$\sqrt{{a}^{2}+{b}^{2}}$≥$\frac{|x-2|}{\sqrt{({x}^{2}-1)^{2}+(2x)^{2}}}$,从而可得a2+b2≥$(\frac{x-2}{1+{x}^{2}})^{2}$=$\frac{1}{(x-2+\frac{5}{x-2}+4)^{2}}$;从而解得.

解答 解:把等式看成关于a,b的直线方程:(x2-1)a+2xb+x-2=0,
由于直线上一点(a,b)到原点的距离大于等于原点到直线的距离,
即$\sqrt{{a}^{2}+{b}^{2}}$≥$\frac{|x-2|}{\sqrt{({x}^{2}-1)^{2}+(2x)^{2}}}$,
所以a2+b2≥$(\frac{x-2}{1+{x}^{2}})^{2}$=$\frac{1}{(x-2+\frac{5}{x-2}+4)^{2}}$,
∵x-2+$\frac{5}{x-2}$在[3,4]是减函数,
∴2+$\frac{5}{2}$≤x-2+$\frac{5}{x-2}$≤1+5;
即$\frac{9}{2}$≤x-2+$\frac{5}{x-2}$≤6;
故$\frac{1}{(x-2+\frac{5}{x-2}+4)^{2}}$≥$\frac{1}{100}$;
当x=3,a=-$\frac{2}{25}$,b=-$\frac{3}{50}$时取等号,
故a2+b2的最小值为$\frac{1}{100}$.
故答案为:$\frac{1}{100}$.

点评 本题考查了函数的零点的应用,把等式看成关于a,b的直线方程(x2-1)a+2xb+x-2=0是难点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上为减函数,若$f({ln\frac{n}{m}})$+$f({ln\frac{m}{n}})$-2f(1)>0,则$\frac{{{m^2}+{n^2}}}{mn}$的取值范围是(  )
A.(e,+∞)B.[2,e)C.$({e+\frac{1}{e},+∞})$D.$[{2,e+\frac{1}{e}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a>1,则$\frac{a^2}{a-1}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了响应低碳环保的社会需求,某自行车租赁公司打算在A市设立自行车租赁点,租车的收费标准是每小时1元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为$\frac{1}{4}、\frac{1}{2}$,一小时以上且不超过两小时还车的概率分别为$\frac{1}{2}、\frac{1}{4}$,两人租车时间都不会超过三小时.
(Ⅰ)求甲、乙两人所付租车费用不相同的概率;
(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若抛物线y2=8ax的焦点与双曲线$\frac{x^2}{a^2}-{y^2}$=1的右焦点重合,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某厂生产甲、乙、丙三种零件,每种零件均有A、B两种型号,某月的产量如下表(单位:个):
A100150m
B300450600
用分层抽样的方法在这个月生产的零件中抽取50件,其中有甲种零件10件.
(Ⅰ) 求m的值;
(Ⅱ) 用分层抽样的方法在丙种零件中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2个,求至少有1个A型零件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正项等比数列{an}中,a3•a6+a2•a7=2e4 则lna1•lna8的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),给出以下四个论断:
①它的图象关于直线x=$\frac{π}{12}$对称;
②它的图象关于点($\frac{π}{3}$,0)对称;
③它的周期是π;          
④在区间[-$\frac{π}{6}$,0)上是增函数.
以其中的两个论断为条件,余下的论断作为结论,则下列命题正确的是(  )
A.①③⇒②④或②③⇒①④B.①③⇒②④C.②③⇒①④D.①④⇒②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面直角坐标系xOy上的区域D由不等式组$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤a}\end{array}\right.$确定,若M(x,y)为D上的动点,点A的坐标为(1,-1),且z=$\overrightarrow{OM}•\overrightarrow{OA}$的最小值为-1,则实数a=(  )
A.7B.5C.4D.3

查看答案和解析>>

同步练习册答案