3£®ÎªÁËÏìÓ¦µÍ̼»·±£µÄÉç»áÐèÇó£¬Ä³×ÔÐгµ×âÁÞ¹«Ë¾´òËãÔÚAÊÐÉèÁ¢×ÔÐгµ×âÁ޵㣬×â³µµÄÊշѱê×¼ÊÇÿСʱ1Ôª£¨²»×ã1СʱµÄ²¿·Ö°´1Сʱ¼ÆË㣩£®¼×¡¢ÒÒÁ½È˸÷×âÒ»Á¾×ÔÐгµ£¬Èô¼×¡¢ÒÒ²»³¬¹ýһСʱ»¹³µµÄ¸ÅÂÊ·Ö±ðΪ$\frac{1}{4}¡¢\frac{1}{2}$£¬Ò»Ð¡Ê±ÒÔÉÏÇÒ²»³¬¹ýÁ½Ð¡Ê±»¹³µµÄ¸ÅÂÊ·Ö±ðΪ$\frac{1}{2}¡¢\frac{1}{4}$£¬Á½ÈË×⳵ʱ¼ä¶¼²»»á³¬¹ýÈýСʱ£®
£¨¢ñ£©Çó¼×¡¢ÒÒÁ½ÈËËù¸¶×â³µ·ÑÓò»ÏàͬµÄ¸ÅÂÊ£»
£¨¢ò£©Éè¼×¡¢ÒÒÁ½ÈËËù¸¶µÄ×â³µ·ÑÓÃÖ®ºÍÎªËæ»ú±äÁ¿¦Î£¬Çó¦ÎµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûE¦Î£®

·ÖÎö £¨¢ñ£©¼×¡¢ÒÒÁ½ÈËËù¸¶·ÑÓÃÏàͬ¼´Îª1£¬2£¬3Ôª£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÀûÓû¥³âʼþµÄ¸ÅÂʹ«Ê½£¬¿ÉÇó¼×¡¢ÒÒÁ½ÈËËù¸¶×â³µ·ÑÓÃÏàͬµÄ¸ÅÂÊ£»
£¨¢ò£©È·¶¨±äÁ¿µÄȡֵ£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¼´¿ÉÇóµÃ¦ÎµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©¼×¡¢ÒÒÁ½ÈËËù¸¶·ÑÓÃÏàͬ£¬¼´Îª1£¬2£¬3Ôª£¬
¶¼¸¶1ÔªµÄ¸ÅÂÊΪP£¨1£©=$\frac{1}{4}¡Á\frac{1}{2}=\frac{1}{8}$
¶¼¸¶2ÔªµÄ¸ÅÂÊΪP£¨2£©=$\frac{1}{2}¡Á\frac{1}{4}=\frac{1}{8}$
¶¼¸¶3ÔªµÄ¸ÅÂÊΪP£¨3£©=$\frac{1}{4}¡Á\frac{1}{4}=\frac{1}{16}$
¹ÊËù¸¶·ÑÓÃÏàͬµÄ¸ÅÂÊΪP=P£¨1£©+P£¨2£©+P£¨3£©=$\frac{1}{8}+\frac{1}{8}+\frac{1}{16}=\frac{5}{16}$
Ëù¸¶·ÑÓò»ÏàͬµÄ¸ÅÂÊΪ1-P=$\frac{11}{16}$
£¨¢ò£©ÒÀÌâÒ⣬¦Î¿ÉÄÜÈ¡µÃֵΪ2£¬3£¬4£¬5£¬6
P£¨¦Î=2£©=$\frac{1}{8}$£¬P£¨¦Î=3£©=$\frac{1}{4}¡Á\frac{1}{4}+\frac{1}{2}¡Á\frac{1}{2}=\frac{5}{16}$
P£¨¦Î=4£©=$\frac{1}{4}¡Á\frac{1}{4}+\frac{1}{2}¡Á\frac{1}{4}+\frac{1}{2}¡Á\frac{1}{4}=\frac{5}{16}$
P£¨¦Î=5£©=$\frac{1}{4}¡Á\frac{1}{4}+\frac{1}{2}¡Á\frac{1}{4}=\frac{3}{16}$
P£¨¦Î=6£©=$\frac{1}{4}¡Á\frac{1}{4}=\frac{1}{16}$
¹Ê¦ÎµÄ·Ö²¼ÁÐΪ

 ¦Î 2 3 4 5 6
 P $\frac{1}{8}$ $\frac{5}{16}$ $\frac{5}{16}$ $\frac{3}{16}$ $\frac{1}{16}$
ËùÇóÊýѧÆÚÍûE¦Î=$2¡Á\frac{1}{8}+3¡Á\frac{5}{16}+4¡Á\frac{5}{16}+5¡Á\frac{3}{16}$$+6¡Á\frac{1}{16}=\frac{15}{4}$

µãÆÀ ±¾Ì⿼²é¸ÅÂʵļÆË㣬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®£¨1£©ÒÑÖªÊýÁÐan=-n2+13.6n£¬Ôòµ±n=7ʱanÈ¡µÃ×î´óÖµ£»
£¨2£©ÒÑÖªa7ÊÇÊýÁÐan=-n2+¦ËnΨһµÄ×î´óÖµ£¬ÔòʵÊý¦ËµÄȡֵ·¶Î§ÊÇ13£¼¦Ë£¼15£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÏòÁ¿$\overrightarrow a£¬\overrightarrow b$Âú×ã|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|=|2$\overrightarrow{a}$+$\overrightarrow{b}$|=1£¬Ôò$|{\overrightarrow b}$|=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Çó£¨1+x£©2n+x£¨1+x£©2n-1+x2£¨1+x£©2n-2+¡­+xn£¨1+x£©nµÄÕ¹¿ªÊ½Öк¬ÓÐxnÏîµÄϵÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-2£¬x¡Ü0}\\{3x-2£¬x£¾0}\end{array}\right.$£¬É輯ºÏA={y|y=|f£¨x£©|£¬-1¡Üx¡Ü1}£¬B={y|y=ax£¬-1¡Üx¡Ü1}£¬Èô¶ÔͬһxµÄÖµ£¬×ÜÓÐy1¡Ýy2£¬ÆäÖÐy1¡ÊA£¬y2¡ÊB£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-1£¬0]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èô¸´Êý$\frac{a+i}{1+i}$ÊÇʵÊý£¨iΪÐéÊýµ¥Î»£©£¬ÔòʵÊýaµÄÖµÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+£¨2b+1£©x-a-2ÔÚÇø¼ä[3£¬4]ÉÏÖÁÉÙÓÐÒ»¸öÁãµã£¬Ôòa2+b2µÄ×îСֵΪ$\frac{1}{100}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®²»µÈʽ|x-2|+|x+3|¡Ý7µÄ½â¼¯ÊÇ£¨-¡Þ£¬-4]¡È[3£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÈçͼÊÇÀûÓÃб¶þ²â»­·¨»­³öµÄ¡÷ABOµÄÖ±¹Ûͼ£¬ÒÑÖªO¡äB¡ä=4£¬ÇÒ¡÷ABOµÄÃæ»ýΪ16£¬¹ýA¡ä×÷A¡äC¡ä¡Íx¡äÖᣬÔòA¡äC¡äµÄ³¤Îª£¨¡¡¡¡£©
A£®$2\sqrt{2}$B£®$\sqrt{2}$C£®$16\sqrt{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸