精英家教网 > 高中数学 > 题目详情
14.向量$\overrightarrow a,\overrightarrow b$满足|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|=|2$\overrightarrow{a}$+$\overrightarrow{b}$|=1,则$|{\overrightarrow b}$|=$\sqrt{3}$.

分析 将已知等式平方,展开变形得到$\overrightarrow{a}•\overrightarrow{b}=-\frac{3}{2}$,$|{\overrightarrow b}$|2=-2$\overrightarrow{a}•\overrightarrow{b}$.

解答 解:因为|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|=|2$\overrightarrow{a}$+$\overrightarrow{b}$|=1,所以|$\overrightarrow{a}$|2=|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|2$\overrightarrow{a}$+$\overrightarrow{b}$|2=1,展开整理得到$\overrightarrow{a}•\overrightarrow{b}=-\frac{3}{2}$,$|{\overrightarrow b}$|2=-2$\overrightarrow{a}•\overrightarrow{b}$,所以$|{\overrightarrow b}$|=$\sqrt{3}$;
故答案为:$\sqrt{3}$.

点评 本题考查了平面向量的数量积公式的运用以及向量模的求法;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.国务院召开青少年校园足球工作电视电话会议,提出教育部将主导校园足球“足球进校园”活动.某市教育部门未了解学生喜欢足球是否与性别有关,在某学校该校50名学生进行了问卷调查,得到了如下的列联表:
 喜欢足球不喜欢足球合计
男生20525
女生101525
合计302050
(Ⅰ)按性别用分层抽样的方法在喜欢足球的学生中抽取6人,求这6人中男生的人数;
(Ⅱ)在上述抽取的6人中随机抽取2人做进一步调查,求恰有1名女生的概率;
(Ⅲ)根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下,认为喜欢足球与性别有关系?
下面的临界值表供参考:
 P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上为减函数,若$f({ln\frac{n}{m}})$+$f({ln\frac{m}{n}})$-2f(1)>0,则$\frac{{{m^2}+{n^2}}}{mn}$的取值范围是(  )
A.(e,+∞)B.[2,e)C.$({e+\frac{1}{e},+∞})$D.$[{2,e+\frac{1}{e}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图的程序框图,如果输入a=4,那么输出的n的值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x∈R,对于使f(x)≤M恒成立的所有常数M中,我们把M的最小值叫做f(x)的上确界.例如f(x)=-x2+2x,x∈R的上确界是1.若a,b∈R+,且a+b=1,则-$\frac{1}{2a}-\frac{2}{b}$的上确界为$-\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=logπ3,b=log3π,c=lnπ,则(  )
A.c>a>bB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a>1,则$\frac{a^2}{a-1}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了响应低碳环保的社会需求,某自行车租赁公司打算在A市设立自行车租赁点,租车的收费标准是每小时1元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为$\frac{1}{4}、\frac{1}{2}$,一小时以上且不超过两小时还车的概率分别为$\frac{1}{2}、\frac{1}{4}$,两人租车时间都不会超过三小时.
(Ⅰ)求甲、乙两人所付租车费用不相同的概率;
(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),给出以下四个论断:
①它的图象关于直线x=$\frac{π}{12}$对称;
②它的图象关于点($\frac{π}{3}$,0)对称;
③它的周期是π;          
④在区间[-$\frac{π}{6}$,0)上是增函数.
以其中的两个论断为条件,余下的论断作为结论,则下列命题正确的是(  )
A.①③⇒②④或②③⇒①④B.①③⇒②④C.②③⇒①④D.①④⇒②③

查看答案和解析>>

同步练习册答案