精英家教网 > 高中数学 > 题目详情
8.若复数$\frac{a+i}{1+i}$是实数(i为虚数单位),则实数a的值是1.

分析 利用复数代数形式的乘除运算化简,由虚部等于0且实部不等于0求得a的值.

解答 解:$\frac{a+i}{1+i}$=$\frac{(a+i)(1-i)}{(1+i)(1-i)}=\frac{a+1+(1-a)i}{2}=\frac{a+1}{2}+\frac{1-a}{2}i$,
∵复数$\frac{a+i}{1+i}$是实数,∴$\left\{\begin{array}{l}{1-a=0}\\{1+a≠0}\end{array}\right.$,即a=1.
故答案为:1.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.现有4个学生去参加某高校的面试,面试要求用汉语或英语中的一种回答问题,每个学生被要求用英语回答问题的概率均为$\frac{1}{3}$.
(Ⅰ)求这4个学生中恰有2人用英语回答问题的概率;
(Ⅱ)若m,n分别表示用汉语,英语回答问题的人数,记X=|m-n|,求随机变量X的概率分布和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=logπ3,b=log3π,c=lnπ,则(  )
A.c>a>bB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,已知角A,B,C的对边分别为a,b,c,且$\frac{sinA-sinC}{b-c}$=$\frac{sinB}{a+c}$,则函数f(x)=cos2($\frac{x}{2}$+A)-sin2($\frac{x}{2}$-A)在[-$\frac{π}{2}$,$\frac{3}{2}$π]上的单调递增区间是[0,π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了响应低碳环保的社会需求,某自行车租赁公司打算在A市设立自行车租赁点,租车的收费标准是每小时1元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为$\frac{1}{4}、\frac{1}{2}$,一小时以上且不超过两小时还车的概率分别为$\frac{1}{2}、\frac{1}{4}$,两人租车时间都不会超过三小时.
(Ⅰ)求甲、乙两人所付租车费用不相同的概率;
(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正四棱锥的底面边长是$3\sqrt{2}$,侧棱长为5,则该正四棱锥的体积为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某厂生产甲、乙、丙三种零件,每种零件均有A、B两种型号,某月的产量如下表(单位:个):
A100150m
B300450600
用分层抽样的方法在这个月生产的零件中抽取50件,其中有甲种零件10件.
(Ⅰ) 求m的值;
(Ⅱ) 用分层抽样的方法在丙种零件中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2个,求至少有1个A型零件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U=R,集合A={x|x2-4x-5=0},B={x|x2=1},则A∩B={-1},A∪B={-1,1,5},A∩(∁UB)={5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知($\root{3}{y}$+$\sqrt{x}$)5的二次展开式的第三项为10,则y关于x的函数图象大致形状为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案