分析 由集合元素的互异性便知这三个元素需两两不等,即为:$\left\{\begin{array}{l}{{k}^{2}≠1}\\{{k}^{2}+k+2≠1}\\{{k}^{2}≠{k}^{2}+k+2}\end{array}\right.$,这样即可解出k的取值范围.
解答 解:根据集合元素的互异性知k满足:
$\left\{\begin{array}{l}{{k}^{2}≠1}\\{{k}^{2}+k+2≠1}\\{{k}^{2}≠{k}^{2}+k+2}\end{array}\right.$;
解得k≠±1,且k≠-2;
∴实数k的取值范围为{k|k≠±1,且k≠-2}.
点评 考查集合、元素的概念,以及集合元素的互异性,注意本题中三个元素两两不等.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com