精英家教网 > 高中数学 > 题目详情
16.用24个点将一个圆24等分,任意选择其中的三点,则可以组成264个不同的直角三角形.

分析 只有三角形的一条边过圆心,才能组成直角三角形,在圆周上有2n个等分点共有n条直径,每条直径可以和除去本身的两个定点外的点组成直角三角形,可做2n-2个直角三角形,根据分步计数原理得到n条直径共组成的三角形数,然后代值计算即可.

解答 解:由题意知,只有三角形的一条边过圆心,才能组成直角三角形,
∵圆周上有2n个等分点
∴共有n条直径,
每条直径可以和除去本身的两个定点外的点组成直角三角形,
∴可做2n-2个直角三角形,
根据分步计数原理知共有n(2n-2)=2n(n-1)个,
当n=12时,为24×(12-1)=264个,
故答案:264.

点评 本题考查分步计数原理,考查圆的有关问题,是一个综合题,解题的关键是对于圆上的点,怎样能组成直角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.${(x-\frac{1}{2x})^{10}}$的展开式中,x4项的系数为-15(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x-a|,a∈R.
(Ⅰ)若a=1,解不等式f(x)≥$\frac{1}{2}$(x+l);
(Ⅱ)记函数g(x)=f(x)-|x-2|的值域为A,若A⊆[1,3],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}满足a1=a,a2=b,2an+2=an+1+an
(1)设bn=an+1-an,证明:若a≠b,则{bn}是等比数列;
(2)若$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=4$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax2+x-b(a,b均为正数),不等式f(x)≥0的解集记为P,集合Q={x|-2-t<x<-2+t},若对于任意正数t,P∩Q≠∅,则$\frac{1}{a}$-$\frac{1}{b}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,a,b,c分别是角A、B、C的对边,已知$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(cosA,cosB),$\overrightarrow{p}$=(2$\sqrt{2}$sin$\frac{B+C}{2}$,2sinA),若$\overrightarrow{m}$∥$\overrightarrow{n}$,${\overrightarrow{p}}^{2}$=9,求A、B、C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知在△ABC中,A,B,C对应的边分别是a,b,c,$且a=1,b=\sqrt{2}$,A=30°,则B=(  )
A.60°B.45°C.135°D.45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设曲线y=ax2-lnx-a在点(1,0)处的切线方程为y=2(x-1),则a=(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,已知A=45°,B=30°,则a:b的值为(  )
A.$\sqrt{2}$:1B.1:$\sqrt{2}$C.$\sqrt{2}$:$\sqrt{3}$D.$\sqrt{3}$:$\sqrt{2}$

查看答案和解析>>

同步练习册答案