精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=ax2+x-b(a,b均为正数),不等式f(x)≥0的解集记为P,集合Q={x|-2-t<x<-2+t},若对于任意正数t,P∩Q≠∅,则$\frac{1}{a}$-$\frac{1}{b}$的最大值是$\frac{1}{2}$.

分析 根据不等式解集对应的关系,得到-2∈P,然后利用基本不等式进行求解即可.

解答 解:∵不等式f(x)≥0的解集记为P,集合Q={x|-2-t<x<-2+t},若对于任意正数t,P∩Q≠∅,
∴-2∈P,即f(-2)≥0,
则4a-2-b≥0,
即1≤2a-$\frac{b}{2}$,又由题意知,$\frac{1}{a}$-$\frac{1}{b}$的最大值必是正数,
则$\frac{1}{a}$-$\frac{1}{b}$=($\frac{1}{a}$-$\frac{1}{b}$)×1=($\frac{1}{a}$-$\frac{1}{b}$)×(2a-$\frac{b}{2}$)≤2-$\frac{b}{2a}$-$\frac{2a}{b}$+$\frac{1}{2}$=$\frac{5}{2}$-2$\sqrt{\frac{b}{2a}•\frac{2a}{b}}$=$\frac{5}{2}$-2=$\frac{1}{2}$,
即$\frac{1}{a}$-$\frac{1}{b}$的最大值是$\frac{1}{2}$,
故答案为:$\frac{1}{2}$

点评 本题主要考查基本不等式的应用,根据集合关系进行等价转化是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|kx+1|+|kx-2k|,g(x)=x+1.
(1)当k=1时,求不等式f(x)>g(x)的解集;
(2)若存在x0∈R,使得不等式f(x0)≤2成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=x+sinx(x∈R),则下列说法错误的是(  )
A.f(x)是奇函数B.f(x)在R上单调递增C.f(x)的值域为RD.f(x)是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标下,定义两个点(ρ1,θ1)和(ρ2,θ2)(ρ1,ρ2>0,0≤θ1,θ2≤2π)的“极坐标中点“为($\frac{{ρ}_{1}+{ρ}_{2}}{2}$,$\frac{{θ}_{1}+{θ}_{2}}{2}$),设点A、B的极坐标为(4,$\frac{π}{100}$)与(8,$\frac{51π}{100}$),设M为线段AB的中点,N为点A、B的“极坐标中点”,则线段MN的长度的平方为56-36$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某学校共有3125名学生,一次活动中全体学生被排成一个n排的等腰梯形阵,且这n排学生数按每排都比前一排
多一人的规律排列,则当n取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是(  )
A.296B.221C.225D.641

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用24个点将一个圆24等分,任意选择其中的三点,则可以组成264个不同的直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数轴上有2个点A、B,最初A在原点,B在坐标2的位置.规定如下,若投掷出来的硬币为正面,则A点坐标加上1,B点坐标不动;反之,若投掷出来的硬币是反面,则B点坐标加上1,A点坐标不动.求下列事件发生的概率
(1)硬币投4次,A的坐标为3的概率;
(2)A比B先到坐标4的概率;
(3)硬币投掷6次,A第一次追上B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在项数为n的等差数列{an}中,前三项之和为12,最后三项之和为132,前n项之和为240,则n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若函数f(x)=$\left\{\begin{array}{l}{x^3,x∈[0,1]}\\{\sqrt{x},x∈(1,2]}\\{{2}^{x},x∈(2,3]}\end{array}\right.$,求${∫}_{0}^{3}$f(x)dx的值.

查看答案和解析>>

同步练习册答案