分析 (I)取n=2,3可得a2,a3,由an=$\frac{n}{n-1}$an-1+2n•3n-2(n≥2,n∈N*),可得:$\frac{{a}_{n}}{n}$-$\frac{{a}_{n-1}}{n-1}$=2×3n-2.利用累加求和方法即可得出an;
(II)求出bn,得出Sn,从而得出S${\;}_{{2}^{n}}$,分别取n=1,2,3,比较S${\;}_{{2}^{n}}$与n的大小,归纳得出结论,利用数学归纳法给出证明.
解答 解:(I)a2=2a1+4=6,a3=$\frac{3}{2}$a2+18=27.
∵an=$\frac{n}{n-1}$an-1+2n•3n-2(n≥2,n∈N*).
∴$\frac{{a}_{n}}{n}$-$\frac{{a}_{n-1}}{n-1}$=2×3n-2,
$\frac{{a}_{n-1}}{n-1}$-$\frac{{a}_{n-2}}{n-2}$=2×3n-3,
…
$\frac{{a}_{2}}{2}$-$\frac{{a}_{1}}{1}$=2×30,
以上各式相加得:$\frac{{a}_{n}}{n}$-a1=2×(3n-2+3n-3+…+30)=2×$\frac{{3}^{n-1}-1}{3-1}$=3n-1-1,
∴$\frac{{a}_{n}}{n}$=3n-1,
∴an=n•3n-1.
(II)bn=$\frac{{3}^{n-1}}{{a}_{n}}$=$\frac{1}{n}$,
数列{bn}的前n项和为Sn=$1+\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$.
则S${\;}_{{2}^{n}}$=$1+\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$+$\frac{1}{n+1}$+…+$\frac{1}{{2}^{n}-1}$+$\frac{1}{{2}^{n}}$.
n=1,S2=1+$\frac{1}{2}$>1;
n=2时,${S}_{{2}^{2}}$=$1+\frac{1}{2}+\frac{1}{3}$+$\frac{1}{4}$>2.
n=3时,${S}_{{2}^{3}}$=$1+\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{3}}$<3.
猜想:当n≥3时,S${\;}_{{2}^{n}}$<n,
下面用数学归纳法给出证明,
(1)显然n=3时,S${\;}_{{2}^{3}}$<3,
(2)假设n=k(k≥3)时,${S}_{{2}^{n}}$<n.
即1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$<k,
则1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$<k+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$
<k+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+1}$+…$\frac{1}{{2}^{k}+1}$=k+$\frac{{2}^{k}}{{2}^{k}+1}$<k+1,
即S${\;}_{{2}^{k+1}}$<k+1,
∴当n=k+1时,猜想也成立.
综上可得:n=1,2时,${S}_{{2}^{n}}$>n;n≥3时,${S}_{{2}^{n}}$<n.
点评 本题考查了数列通项公式的求法,数学归纳法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 32+8$\sqrt{5}$ | B. | 36π | C. | 18π | D. | $\frac{40\sqrt{10}}{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {3,5,7} | B. | {3,7} | C. | {4,5,6} | D. | {5} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com