精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若2b=a+c,B=30°,且该三角形的面积为$\frac{3}{2}$,则b=1+$\sqrt{3}$.

分析 由已知及三角形面积公式可求ac=6,4b2=a2+c2+2ac,由余弦定理得b2=a2+c2-2ac×$\frac{\sqrt{3}}{2}$,两式相减得可得b2=4+2$\sqrt{3}$,即可得解b的值.

解答 解:在△ABC中,∵B=30°,△ABC的面积是$\frac{3}{2}$,
∴S=$\frac{1}{2}$acsin30°=$\frac{1}{2}$×$\frac{1}{2}$ac=$\frac{3}{2}$,
即ac=6,
∵2b=a+c,
∴4b2=a2+c2+2ac,①
则由余弦定理得b2=a2+c2-2ac×$\frac{\sqrt{3}}{2}$,②
∴两式相减得3b2=2ac+2ac×$\frac{\sqrt{3}}{2}$=12+6$\sqrt{3}$,
即b2=4+2$\sqrt{3}$,
即b=1+$\sqrt{3}$.
故答案为:1+$\sqrt{3}$.

点评 本题主要考查了正弦定理的应用.解题过程中常需要正弦定理,余弦定理,三角形面积公式以及勾股定理等知识.要求熟练掌握相应的公式和定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若a∈[0,1],b∈[0,1],则函数y=x3+$\sqrt{a}{x^2}$+bx+2为增函数的概率为(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(ωx+φ)对任意的x∈R都有f($\frac{π}{4}$-x)=f($\frac{π}{4}$+x),若函数g(x)=2cos(ωx+φ)-1,则g($\frac{π}{4}$)的值为(  )
A.-3B.1C.-1D.1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.阅读如图的程序的框图,则输出S=50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于(-c,±$\frac{{b}^{2}}{a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈[$\frac{1}{2}$,2]时,函数f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果“p或q”为真命题,“p且q”为假命题,则c的取值范围是$(0,\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{2}{x^2}-(2a+2)x+(2a+1)lnx$,若曲线y=f(x)在点(2,f(2))处的切线的斜率小于零,
(1)求函数f(x)的单调增区间;
(2)对任意x1,x2∈[0,2](x1≠x2),$a∈[{\frac{3}{2},\frac{5}{2}}]$,恒有$|{f({x_1})-f({x_2})}|<λ|{\frac{1}{x_1}-\frac{1}{x_2}}|$成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式|x+3|-|x-1|≤a对任意实数x恒成立,则实数a的取值范围是(  )
A.[4,+∞)B.(4,+∞)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于函数f(x)=(x2-2x+2)ex-$\frac{e}{3}{x^3}$的下列描述,错误的是(  )
A.无最大值
B.极大值为2
C.极小值为$\frac{2e}{3}$
D.函数g(x)=f(x)-2的图象与x轴只有两个交点

查看答案和解析>>

同步练习册答案