分析 由已知及三角形面积公式可求ac=6,4b2=a2+c2+2ac,由余弦定理得b2=a2+c2-2ac×$\frac{\sqrt{3}}{2}$,两式相减得可得b2=4+2$\sqrt{3}$,即可得解b的值.
解答 解:在△ABC中,∵B=30°,△ABC的面积是$\frac{3}{2}$,
∴S=$\frac{1}{2}$acsin30°=$\frac{1}{2}$×$\frac{1}{2}$ac=$\frac{3}{2}$,
即ac=6,
∵2b=a+c,
∴4b2=a2+c2+2ac,①
则由余弦定理得b2=a2+c2-2ac×$\frac{\sqrt{3}}{2}$,②
∴两式相减得3b2=2ac+2ac×$\frac{\sqrt{3}}{2}$=12+6$\sqrt{3}$,
即b2=4+2$\sqrt{3}$,
即b=1+$\sqrt{3}$.
故答案为:1+$\sqrt{3}$.
点评 本题主要考查了正弦定理的应用.解题过程中常需要正弦定理,余弦定理,三角形面积公式以及勾股定理等知识.要求熟练掌握相应的公式和定理,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 1 | C. | -1 | D. | 1或-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [4,+∞) | B. | (4,+∞) | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 无最大值 | |
| B. | 极大值为2 | |
| C. | 极小值为$\frac{2e}{3}$ | |
| D. | 函数g(x)=f(x)-2的图象与x轴只有两个交点 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com