精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点.
①求证:AN∥平面MBD;
②求二面角M-BD-C的余弦值.
分析:①利用三角形的中位线定理和线面平行的判定定理即可证明;
②通过建立空间直角坐标系,利用求两个平面的法向量所成的夹角的余弦值即可.
解答:解:①证明:连接对角线AC交BD于点O,
∵底面ABCD是矩形,∴AO=OC.
又∵NM=MC=
1
3
PC
,∴OM∥AN.
又∵AN?平面MBD,OM?平面MBD.
∴AN∥平面MBD;
②距离如图所示的空间直角坐标系:∵BC=2AB=2PA=6,∴D(6,0,0),C(6,3,0),B(0,3,0),P(0,0,3).
由M点为线段PC的三等分点,∴M(4,2,1).
DB
=(-6,3,0)
DM
=(-2,2,1)

设平面BMD的法向量
n
=(x,y,z)

n
DB
=0
n
DM
=0
-6x+3y=0
-2x+2y+z=0
,令y=2,则x=1,z=
5
2

n
=(1,2,
5
2
)

∵PA⊥平面BCD,∴可取
AP
=(0,0,3)作为平面BCD的法向量.
cos<
n
AP
=
n
AP
|
n
| |
AP
|
=
5
2
12+22+(
5
2
)2
32
=
5
3

∴二面角M-BD-C的余弦值为
5
3
点评:熟练掌握三角形的中位线定理和线面平行的判定定理及利用两个平面的法向量所成的夹角的余弦值求二面角的余弦值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案