【题目】已知抛物线的焦点与椭圆的右焦点相同.
(Ⅰ)求抛物线的方程;
(Ⅱ)若直线与曲线都只有一个公共点,记直线与抛物线的公共点为P,求点P的坐标.
科目:高中数学 来源: 题型:
【题目】设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.
(1)求p的值;
(2)求证:数列{an}为等比数列;
(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为4的正方形中,点E、F分别为边的中点,以和为折痕把和折起,使点B、D重合于点P位置,连结,得到如图所示的四棱锥.
(1)在线段上是否存在一点G,使与平面平行,若存在,求的值;若不存在,请说明理由
(2)求点A到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.
(1)求椭圆的方程;
(2)若过左焦点斜率为的直线与椭圆交于点 为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角
(1)若问:观察者离墙多远时,视角最大?
(2)若当变化时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,为抛物线上一点.
(1)求过点的切线方程(用表示);
(2)过直线上一点作抛物线的两条切线,切点为,求与(为抛物线的顶点)面积之和的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com