精英家教网 > 高中数学 > 题目详情
已知f(x)=x3-
1
2
x2+bx+c

(1)若f(x)的图象有与x轴平行的切线,求b的取值范围;
(2)若f(x)在x=1时取得极值,且x∈(-1,2),f(x)<c2恒成立,求c的取值范围.
(1)由f(x)=x3-
1
2
x2+bx+c

∴f'(x)=3x2-x+b(2分)
由己知f'(x)=0有实数解,∴△=1-12b≥0,故b≤
1
12
(3分)
(2)∵f(x)在x=1时取得极值
∴x=1是方程3x2-x+b=0的一个根,设另一根为x0
x0+1=
1
3
x0×1=
b
3
,∴
x0=-
2
3
b=-2
(2分)
f(x)=x3-
1
2
x2-2x+c
,f'(x)=3x2-x-2
x∈(-1,-
2
3
)
时,f'(x)>0;
x∈(-
2
3
,1)
时,f'(x)<0;
当x∈(1,2)时,f'(x)>0
∴当x=-
2
3
时,f(x)有极大值
22
27
+c

f(-1)=
1
2
+c
,f(2)=2+c,
即当x∈[-1,2]时,f(x)的量大值为f(2)=2+c(3分)
∵对x∈(-1,2)时,f(x)<c2恒成立,∴c2≥2+c,∴c≤-1或c≥2(3分)
故c的取值范围是:(-∞,-1]∪[2,+∞)(1分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+
3x
,求函数f(x)的单调区间及其极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+
1
2
mx2-2m2x-4
(m为常数,且m>0)有极大值-
5
2

(Ⅰ)求m的值;
(Ⅱ)求曲线y=f(x)的斜率为2的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c在x=1与x=-
23
时都取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-1,2],都有f(x)-c2<0成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=
x+3
x2+3
的导数
(2)已知f(x)=x3+4cosx-sin
π
2
,求f'(x)及f′(
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x3+ax2-4
 (a∈R)
,f′(x)是f(x)的导函数.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a=2时,对任意的m∈[-1,1],n∈[-1,1],求f(m)+f'(n)的最小值;
(3)若?x0∈(0,+∞),使f(x)>0,求a取值范围.

查看答案和解析>>

同步练习册答案