精英家教网 > 高中数学 > 题目详情

函数
(1)设函数,若方程上有且仅一个实根,求实数 的取值范围;
(2)当时,求函数上的最大值.

(1)实数 的取值范围
(2)当时,,当时,

解析试题分析:(1)由二次方程上有且仅一个实根,说明且根在上或一根在上一根不在上两种情况,由以上情况列出相应关系式求实数
(2)当时,上是分段函数,分段函数的最值,应先求出函数在各部分的最值,然后取各部分的最值的最大值为整个函数的最大值.
试题解析:
(1)方程上有且仅一个实根
即方程上有且仅一个实根               2分
Ⅰ当方程上有两个相等实根
此时无解;                       4分
Ⅱ当方程一根在上一根不在上分两类情况
①在上有且仅一个实根,则 
                                  6分
②当时,此时方程
符合题意
综上所述,实数 的取值范围                                8分
(2)Ⅰ当时,
∴当时,                               10分
Ⅱ当时,
∵函数上单调递增
                                   12分

∴当时,,当时,.    14分
考点:二次方程的实根分布,分段函数求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一种放射性元素,最初的质量为,按每年衰减.
(1)求年后,这种放射性元素的质量的函数关系式;
(2)求这种放射性元素的半衰期(质量变为原来的时所经历的时间).(

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时有最大值2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)解不等式
(Ⅱ)设集合,集合,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当,且时,求证: 
(2)是否存在实数,使得函数的定义域、值域都是?若存在,则求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有.
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不低于万元,同时不超过投资收益的.
(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型的基本要求.
(2)下面是公司预设的两个奖励方案的函数模型:
;    ②
试分别分析这两个函数模型是否符合公司要求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.

查看答案和解析>>

同步练习册答案